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Producer-Consumer Problem

• Concurrent access to shared data may result in data
inconsistency

• Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes

• Example: consumer-producer problem that fills all the available
buffers
• One integer (count) keeps track of the number of full buffers,

initially set to 0. It is incremented by the producer after it produces
an item and it is decremented by the consumer after consuming an
item from the buffer.

w h i l e ( t r u e ) {
/∗ produce i tem i n nextProduced ∗/

w h i l e ( count == BUFFER SIZE )
; // do no th ing

b u f f e r [ i n ] = nextProduced ;
i n = ( i n + 1) % BUFFER SIZE ;
count++;

}

w h i l e ( t r u e ) {
w h i l e ( count == 0)

; // do no th ing
nextConsumed = b u f f e r [ out ] ;
out = ( out + 1) % BUFFER SIZE ;
count−−;
/∗ consume item i n nextConsumed ∗/

}
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Producer - Consumer Race Condition

• count++ could be implemented as

register1 = count

register1 = register1 + 1

count = register1

• count−− could be implemented as

register2 = count

register2 = register2 - 1

count = register2

• Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1=count {register1 = 5}
S1: producer execute register1=register1+1 {register1 = 6}
S2: consumer execute register2=count {register2 = 5}
S3: consumer execute register2=register2-1 {register2 = 4}
S4: producer execute count=register1 {count = 6}
S5: consumer execute count=register2 {count = 4}
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Solution to Critical-Section Problem

• Mutual Exclusion - If process Pi is executing in the critical
section, then no other processes can be executing in the critical
sections

• Progress - If no process is executing in the critical section and
there exist some processes that wish to enter the critical section,
then the selection of the processes that will enter the critical
section next cannot be postponed indefinitely

• Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter the critical sections
after a process has made a request to enter its critical section
and before that request is granted
• Assume that each process executes at a nonzero speed
• No assumption concerning relative speed of the N processes
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Peterson’s Solution
• Two process solution (can be generalised for more than two)
• Assume that the LOAD and STORE instructions are atomic;

that is, cannot be interrupted.
• The two processes share two variables:
• int turn;
• Boolean flag[2];

• The variable turn indicates whose turn it is to enter the critical
section afterwards.

• The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that Pi is ready!

do {
f l a g [ i ] = TRUE;
t u r n = j ;
w h i l e ( f l a g [ j ] && t u r n == j ) ;
/∗ c r i t i c a l s e c t i o n ∗/
f l a g [ i ] = FALSE ;
/∗ r ema inde r s e c t i o n ∗/

} w h i l e (TRUE ) ;
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Synchronization Hardware

• Many systems provide hardware support for critical section code

• Uniprocessors could disable interrupts
• Currently running code would execute without preemption
• Generally too inefficient on multiprocessor systems

Ü Operating systems disabling interruts are not broadly scalable

• Modern machines provide special atomic (= non-interruptable)
hardware instructions
• Test memory word And Set value (TAS)
• Load-Store (ldstub)(e.g., SPARC V9)

• Fetch and Add (e.g., x86)
• Swap contents of two memory words
• Compare and Swap (CAS) (e.g., SPARC V9, 68K)

• Load-Link/Sore-Conditional (LL/SC) (e.g., ARM, PowerPC, MIPS)
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Solution to Critical-section Problem Using Locks

do {
a c q u i r e l o c k

c r i t i c a l s e c t i o n
r e l e a s e l o c k

r e m a i n d e r s e c t i o n
} w h i l e (TRUE ) ;

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 8/69



TestAndSet Instruction

• Definition:

b o o l e a n TestAndSet ( b o o l e a n ∗ t a r g e t )
{

b o o l e a n r v = ∗ t a r g e t ;
∗ t a r g e t = TRUE;
r e t u r n r v :
}

• Solution with shared boolean variable lock, initialized to false:

do {
w h i l e ( TestAndSet (& l o c k ) ) ; // do no th ing
// c r i t i c a l s e c t i o n
l o c k = FALSE ;
// rema inde r s e c t i o n

} w h i l e (TRUE ) ;
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Swap Instruction

• Definition:

v o i d Swap ( b o o l e a n ∗a , b o o l e a n ∗b )
{

b o o l e a n temp = ∗a ;
∗a = ∗b ;
∗b = temp :
}

• Solution with shared boolean variable lock, initialized to false.
Each process has a local boolean variable key:

do {
key = TRUE;
w h i l e ( key == TRUE) Swap (& l o c k , &key ) ;
// c r i t i c a l s e c t i o n
l o c k = FALSE ;
// rema inde r s e c t i o n

} w h i l e (TRUE ) ;
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Bounded-waiting Mutual Exclusion with TestandSet

do {
w a i t i n g [ i ] = TRUE;
key = TRUE;
w h i l e ( w a i t i n g [ i ] && key )

key = TestAndSet(& l o c k ) ;
w a i t i n g [ i ] = FALSE ;
// c r i t i c a l s e c t i o n
j = ( i + 1) % n ;
w h i l e ( ( j != i ) && ! w a i t i n g [ j ] )

j = ( j + 1) % n ;
i f ( j == i )

l o c k = FALSE ;
e l s e

w a i t i n g [ j ] = FALSE ;
// rema inde r s e c t i o n

} w h i l e (TRUE ) ;
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Semaphore

• Synchronization tool that does not necessarily require busy
waiting

• Semaphore S - integer variable

• Two standard operations: wait(S) and signal(S)

• Originally called P() (“proberen”) and V()
(“verhogen”=increment)

• Can only be accessed via two indivisible (atomic) operations

w a i t ( S ){
w h i l e S <= 0

; // no−op
S−−;

}

s i g n a l ( S ){
S++;

}
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Semaphore as General Synchronization Tool

• Counting semaphore - integer value can range over an
unrestricted domain
• can be used to control access to a resource consisting of a finite

number of instances

• Binary semaphore - integer value can range between 0 and 1
• can be simpler to implement
• also known as mutex locks

Semaphore mutex ; // i n i t i a l i z e d to 1
do {

w a i t ( mutex ) ;
// C r i t i c a l S e c t i o n
s i g n a l ( mutex ) ;
// rema inde r s e c t i o n

} w h i l e (TRUE ) ;
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Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated waiting queue. Each
entry in a waiting queue has two data items:
• value (of type integer)
• pointer to next record in the list

• Two operations:
• block - place the process invoking the operation on the appropriate

waiting queue.
• wakeup - remove one of processes in the waiting queue and place it

in the ready queue

w a i t ( semaphore ∗S ) {
S−>v a l u e−−;
i f ( S−>v a l u e < 0) {

add t h i s p r o c e s s to S−> l i s t ;
b l o c k ( ) ;

}
}

s i g n a l ( semaphore ∗S ) {
S−>v a l u e ++;
i f ( S−>v a l u e <= 0) {

remove a p r o c e s s P from S−> l i s t ;
wakeup (P ) ;

}
}
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Semaphore Implementation

• Must guarantee that no two processes can execute wait() and
signal() on the same semaphore at the same time

• Thus, implementation becomes the critical section problem
where the wait and signal code are placed in the critical section.
• Could now have busy waiting in critical section implementation
• But implementation code is short
• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical sections
and therefore this is not a good solution.
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Deadlock and Starvation

• Deadlock - two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1

P0
w a i t ( S ) ;
w a i t (Q) ;

.

.

.
s i g n a l (Q) ;
s i g n a l ( S ) ;

P1
w a i t (Q) ;
w a i t ( S ) ;

.

.

.
s i g n a l ( S ) ;
s i g n a l (Q) ;

• Starvation - indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended
(e.g., with LIFO queue ordering)
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Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem
• First Readers and Writers Problem
• Second Readers and Writers Problem
• Third Readers and Writers Problem

• Dining-Philosophers Problem
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Bounded-Buffer Problem

• N buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value N

do {
// produce an i tem i n nextP

w a i t ( empty ) ;
w a i t ( mutex ) ;

// add the i tem to the b u f f e r

s i g n a l ( mutex ) ;
s i g n a l ( f u l l ) ;

} w h i l e (TRUE ) ;

do {
w a i t ( f u l l ) ;
w a i t ( mutex ) ;

// remove i tem from b u f f e r to nextC

s i g n a l ( mutex ) ;
s i g n a l ( empty ) ;

// consume item i n nextC
} w h i l e (TRUE ) ;
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Reader-Writers Problem

• A data set is shared among a number of concurrent processes
• Readers - only read the data set; they do not perform any updates
• Writers - can both read and write

• Problem: allow multiple readers to read at the same time. Only
one single writer can access the shared data at the same time
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1st Readers-Writers Problem
• 1st Readers-Writers Problem (readers-preference):

“No reader shall be kept waiting if the share is currently opened
for reading”

• Shared Data
• Data set
• Semaphore mutex initialized to 1
• Semaphore wrt initialized to 1
• Integer readcount initialized to 0

do {
w a i t ( wrt ) ;

// w r i t i n g i s pe r fo rmed

s i g n a l ( wrt ) ;
} w h i l e (TRUE ) ;

do {
w a i t ( mutex ) ;
r e a d c o u n t ++ ;
i f ( r e a d c o u n t == 1)

w a i t ( wrt ) ;
s i g n a l ( mutex ) ;

// r e ad i n g i s pe r fo rmed

w a i t ( mutex ) ;
readcount−−;
i f ( r e a d c o u n t == 0)

s i g n a l ( wrt ) ;
s i g n a l ( mutex ) ;

} w h i l e (TRUE ) ;
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2nd & 3rd Readers-Writers Problem

• 2nd Readers-Writers Problem (writers-preference):
“No writer, once added to the queue, shall be kept waiting
longer than absolutely necessary”

• 3rd Readers-Writers Problem (bounded waiting):
“No thread shall be allowed to starve”
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Dining-Philosophers Problem

• 5 philosophers

• Cyclic “Workflow”
• Think
• Get hungry
• Grab for left & right chopsticks
• Eat
• Put down chopsticks

• Ground rules
• No communication
• No “atomic” grabbing
• No wresting
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Dining-Philosophers Problem

• Näıve solution with Semaphore chopstick[5] initialized to 1
• The structure of Philosopher i:

do {
w a i t ( c h o p s t i c k [ i ] ) ;
w a i t ( c h o p S t i c k [ ( i + 1) % 5 ] ) ;

// ea t
s i g n a l ( c h o p s t i c k [ i ] ) ;
s i g n a l ( c h o p s t i c k [ ( i + 1) % 5 ] ) ;
// t h i n k

} w h i l e (TRUE ) ;

Ü Deadlock
• Workaround
• Just 4 philosophers allowed at the table
• Atomic grabbing (with critical section)
• Asymmetric solution (odd phil.: LR, even phil. RL)
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Monitors

• A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

• Only one process may be active within the monitor at a time

moni to r monitor−name
{
// sha r ed v a r i a b l e d e c l a r a t i o n s
p r o c e d u r e P1 ( . . . ) {

. . . . .
}

. . .
p r o c e d u r e Pn ( . . . ) {

. . . . .
}
i n i t i a l i z a t i o n code ( . . . ) {

. . . . .
}
}
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Schematic view of a Monitor
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Monitor with Condition Variables

• Two operations on a condition variable:
• x.wait () - a process that invokes the operation is suspended.
• x.signal() - resumes one of processes (if any) that invoked x.wait ()

• Two styles of condition variables:
• Blocking condition variables give priority to a signaled thread

“Signal and wait”
• Nonblocking condition variables give priority to the signaling thread.

“Signal and continue” (notify/notify all)
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Solution to Dining Philosophers

• Each philosopher invokes the operations pickup() and putdown()
in the following sequence:
• DiningPhilosophers.pickup(i);
• Eat
• DiningPhilosophers.putdown(i);

moni to r D i n i n g P h i l o s o p h e r
{

enum {THINKING ,HUNGRY, EATING) s t a t e [ 5 ] ;
c o n d i t i o n s e l f [ 5 ] ;

v o i d p i c k u p ( i n t i ) {
s t a t e [ i ] = HUNGRY;
t e s t ( i ) ;
i f ( s t a t e [ i ] !=EATING) s e l f [ i ] . w a i t ;

}

v o i d putdown ( i n t i ) {
s t a t e [ i ] = THINKING ;
// t e s t l e f t and r i g h t n e i g hbo r s
t e s t ( ( i +4)%5);
t e s t ( ( i +1)%5);

}

v o i d t e s t ( i n t i ) {
i f ( ( s t a t e [ ( i +4)%5] != EATING) &&

( s t a t e [ i ] == HUNGRY) &&
( s t a t e [ ( i +1)%5] != EATING ) ) {

s t a t e [ i ] = EATING ;
s e l f [ i ] . s i g n a l ( ) ;

}
}

i n i t i a l i z a t i o n c o d e ( ) {
f o r ( i n t i = 0 ; i < 5 ; i ++)

s t a t e [ i ] = THINKING ;
}
}
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Monitor Implementation Using Semaphores

• Variables

semaphore mutex ; // ( i n i t i a l l y = 1) e n t r y
semaphore n e x t ; // ( i n i t i a l l y = 0) re−e n t r y
i n t n e x t c o u n t = 0 ;

• Each procedure F will be replaced by

w a i t ( mutex ) ;
. . .

body o f F ;
. . .

i f ( n e x t c o u n t > 0)
s i g n a l ( n e x t ) ;

e l s e
s i g n a l ( mutex ) ;

• Mutual exclusion within a monitor is ensured.
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Monitor Implementation

• For each condition variable x, we have:

semaphore x sem ; // ( i n i t i a l l y = 0)
i n t x c o u n t = 0 ;

• The operation x.wait can be
implemented as:

x c o u n t ++;
i f ( n e x t c o u n t > 0)

s i g n a l ( n e x t ) ;
e l s e

s i g n a l ( mutex ) ;
w a i t ( x sem ) ;
x count−−;

• The operation x.signal can be
implemented as:

i f ( x c o u n t > 0) {
n e x t c o u n t ++;
s i g n a l ( x sem ) ;
w a i t ( n e x t ) ;
n e x t c o u n t −−;

}
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Monitor Implementation Using Semaphores
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Solaris Synchronization

• Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and multiprocessing

• Uses adaptive mutexes for efficiency when protecting data from
short code segments

• Uses condition variables and readers-writers locks when longer
sections of code need access to data

• Uses turnstiles to order the list of threads waiting to acquire
either an adaptive mutex or reader-writer lock
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Linux Synchronization

• Prior to kernel Version 2.6, disables interrupts to implement
short critical sections

• Version 2.6 and later, fully preemptive

• Linux rovides
• semaphores
• spin locks
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Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:
• mutex locks
• condition variables

• Non-portable extensions include:
• read-write locks
• spin locks
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Deadlock

• Problem Description

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection

• Recovery from Deadlock
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Bridge Crossing Example

• Traffic only in one direction

• Each section of a bridge can be viewed as a resource

• If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

• Several cars may have to be backed up if a deadlock occurs

• Starvation is possible

• Note - Most OSes do not prevent or deal with deadlocks
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System Model

• Resource types R1, R2, . . . , Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:
• request
• use
• release
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Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

• Circular wait: there exists a set {P0, P1, . . . ,P0} of waiting
processes such that P0 is waiting for a resource that is held by
P1, P1 is waiting for a resource that is held by P2, . . . , Pn−1 is
waiting for a resource that is held by Pn, and Pn is waiting for a
resource that is held by P0.
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Resource-Allocation Graph

A set of vertices V and a set of edges E

• V is partitioned into two types:
• P = {P1, P2, . . . ,Pn}, the set consisting of all the processes in the

system
• R = {R1, R2, . . . ,Rm}, the set consisting of all resource types in the

system

• request edge - directed edge Pi → Rj

• assignment edge - directed edge Rj → Pi
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Resource-Allocation Graph II

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 40/69



Example of a Resource Allocation Graph
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Resource Allocation Graph With A Deadlock
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Graph With A Cycle But No Deadlock
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Basic Facts

• If graph contains no cycles ⇒ no deadlock

• If graph contains a cycle ⇒
• if only one instance per resource type, then deadlock
• if several instances per resource type, possibility of deadlock
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Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock state

• Allow the system to enter a deadlock state and then recover

• Ignore the problem and pretend that deadlocks never occur in
the system; used by most operating systems, including UNIX
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Deadlock Prevention

Deadlocks can be prevented by ensuring that at least one of the
conditons cannot hold

• Mutual Exclusion

• Must hold for nonsharable resources (e.g., write access, printer
device, . . . )

• Not required for sharable resources (e.g., read access)

• Hold and Wait - must guarantee that whenever a process
requests a resource, it does not hold any other resources
• Require process to request and be allocated all its resources before

it begins execution, or allow process to request resources only when
the process has none

• Low resource utilization; starvation possible
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Deadlock Prevention II

• No Preemption -
• If a process that is holding some resources requests another resource

that cannot be immediately allocated to it, then all resources
currently being held are released

• Preempted resources are added to the list of resources for which the
process is waiting

• Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting

• Circular Wait - impose a total ordering of all resource types, and
require that each process requests resources in an increasing
order of enumeration
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Deadlock Avoidance

Requires that the system has some additional a priori information
available

• Simplest and most useful model requires that each process
declare the maximum number of resources of each type that it
may need

• The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition

• Resource-allocation state is defined by the number of available
and allocated resources, and the maximum demands of the
processes
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Safe State

• When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state

• System is in safe state if there exists a sequence 〈P1, P2, . . . ,Pn〉
of ALL the processes in the systems such that for each Pi , the
resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj , with j < i

• That is:
• If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished
• When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate
• When Pi terminates, Pi+1 can obtain its needed resources, and so

on
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Safe, Unsafe , Deadlock State

• If a system is in safe state ⇒ no deadlocks

• If a system is in unsafe state ⇒ possibility of deadlock

• Avoidance ⇒ ensure that a system will never enter an unsafe
state.
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Avoidance algorithms

• Single instance of a resource type
• Use a resource-allocation graph

• Multiple instances of a resource type
• Use the banker’s algorithm
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Resource-Allocation Graph Scheme

• Claim edge Pi → Rj indicated that process Pi may request
resource Rj , represented by a dashed line

• Claim edge converts to request edge when a process requests a
resource

• Request edge converted to an assignment edge when the
resource is allocated to the process

• When a resource is released by a process, assignment edge
reconverts to a claim edge

• Resources must be claimed a priori in the system

• The request can be granted only if converting the request edge
to an assignment edge does not result in the formation of a
cycle in the resource allocation graph (=unsafe state)
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Unsafe State In Resource-Allocation Graph
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Banker’s Algorithm

• Multiple instances

• Each process must a priori claim maximum use

• When a process requests a resource it may have to wait

• When a process gets all its resources it must return them in a
finite amount of time
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Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

• Available: Vector of length m. If Available[j ]=k, there are k
instances of resource type Rj available

• Max: An n x m matrix. If Max[ij ] = k, then process Pi may
request at most k instances of resource type Rj

• Allocation: An n x m matrix. If Allocation[ij ] = k then Pi is
currently allocated k instances of Rj

• Need: An n x m matrix. If Need[ij ] = k, then Pi may need k
more instances of Rj to complete its task
Need[ij ] = Max[ij ] - Allocation[ij ]
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Safety Algorithm with O(m × n2)

1 Let Work and Finish be vectors of length m and n
Initialize:

(a) Work = Available
(b) Finish[i ] = false for i = 0, 1, . . . , n − 1

2 Find an index i such that both:

(a) Finish[i ] == false
(b) Needi ≤Work

If no such i exists, go to step 4

3 Work = Work + Allocationi

Finish[i ] = true
go to step 2

4 If Finish[i ] == true for all i, then the system is in a safe state
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Resource-Request Algorithm for Process Pi

Request = request vector for process Pi . If Requesti [j ] = k then
process Pi wants k instances of resource type Rj

1 If Requesti ≤ Needi go to step 2. Otherwise raise error
condition, since process has exceeded its maximum claim

2 If Requesti ≤ Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3 Pretend to allocate requested resources to Pi by modifying the
state as follows:
Available = Available − Request;
Allocationi = Allocationi + Requesti ;
Needi = Needi − Requesti ;

• If safe ⇒ the resources are allocated to Pi

• If unsafe ⇒ Pi must wait, and the old resource-allocation state is
restored
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Example of Banker’s Algorithm

• 5 processes P0 through P4

3 resource types A (10 ×), B(5 ×), and C (7 ×)

• Snapshot at time T0:
Allocation Max Need Available

A B C A B C A B C A B C
P0 0 1 0 7 5 3 7 4 3 3 3 2
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

• The system is in a safe state since the sequence
〈P1, P3, P4, P2, P0〉 satisfies safety criteria
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Example: P1 Request(1,0,2)

• Check that Request ≤ Available
(that is (1, 0, 2) ≤ (3, 3, 2)⇒ true)

Allocation Max Need Available
A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 2 3 0
P1 3 0 2 3 2 2 0 2 0
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

• Executing safety algorithm shows that sequence
〈P1, P3, P4, P0, P2〉 satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?
(No, resource not available)

• Can request for (0,2,0) by P0 be granted?
(No, no safe state)
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Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme
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Single Instance of Each Resource Type

• Maintain wait-for graph
• Nodes are processes
• The corresponding resource-allocation graph contains two edges

Pi → Rq und Rq → Pj

• Wait-for graph: Pi → Pj ; if Pi is waiting for Pj

• Periodically invoke an algorithm that searches for a cycle in the
graph. If there is a cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph
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Resource-Allocation Graph and Wait-for Graph
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Several Instances of a Resource Type

• Available: A vector of length m indicates the number of
available resources of each type.

• Allocation: An n x m matrix defines the number of resources of
each type currently allocated to each process.

• Request: An n x m matrix indicates the current request of each
process. If Request[ij ] = k, then process Pi is requesting k more
instances of resource type Rj .
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Detection Algorithm with O(m × n2)

1 Let Work and Finish be vectors of length m and n
Initialize:

(a) Work = Available
(b) For i = 0, 1, . . . , n − 1

if Allocationi 6= 0
then Finish[i ] = false;
else Finish[i ] = true;

2 Find an index i such that both:
(a) Finish[i ] == false
(b) Requesti ≤Work

If no such i exists, go to step 4

3 Work = Work + Allocationi

Finish[i ] = true
go to step 2

4 If Finish[i ] == false, for some i , 0 ≤ i < n, then the system is in
deadlocked state.

5 If Finish[i ] == false, then Pi is deadlocked.
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Example of Detection Algorithm

• 5 processes P0 through P4

3 resource types A (7 ×), B(2 ×), and C (6 ×)

• Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

• Sequence 〈P0, P2, P3, P1, P4〉 will result in Finish[i ] = true for all
i
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Example of Detection Algorithm II

• 5 processes P0 through P4

3 resource types A (7 ×), B(2 ×), and C (6 ×)

• P2 requests an additional instance of type C

• Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 1
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

• State of system?
• Can reclaim resources held by process P0, but insufficient resources

to fulfill other processes requests
• Deadlock exists, consisting of processes P1, P2, P3, and P4
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Detection-Algorithm Usage

• When, and how often, to invoke depends on:
• How often a deadlock is likely to occur?
• How many processes will need to be rolled back?
• one for each disjoint cycle

• One request may create many cycles in the resource graph
• Each cycle is completed by the most recent request
• Each cycle was “caused” by the one identifiable process.

• If detection algorithm is invoked arbitrarily, there may be many
cycles in the resource graph and so we would not be able to tell
which of the many deadlocked processes “caused” the deadlock
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Recovery from Deadlock: Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is eliminated

• In which order should we choose to abort?
• Priority of the process
• How long process has computed, and how much longer to

completion
• Resources the process has used
• Resources process needs to complete
• How many processes will need to be terminated
• Is process interactive or batch?
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Recovery from Deadlock: Resource Preemption

• Selecting a victim - minimize cost

• Rollback - return to some safe state, restart process for that
state

• Starvation - same process may always be picked as victim,
include number of rollback in cost factor
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