
Process Synchronization Process Deadlock

Betriebssysteme
Process Coordination

Lehrstuhl Systemarchitektur

WS 2009/2010

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 1/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Synchronization

The Critical-Section Problem

Peterson’s Solution

Synchronization Hardware

Semaphores

Classic Problems of Synchronization

Monitors

Synchronization Examples

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 2/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Producer-Consumer Problem

Concurrent access to shared data may result in data
inconsistency

Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes

Example: consumer-producer problem that fills all the available
buffers

One integer (count) keeps track of the number of full buffers,
initially set to 0. It is incremented by the producer after it produces
an item and it is decremented by the consumer after consuming an
item from the buffer.

w h i l e (t r u e) {
/∗ produce i tem i n nextProduced ∗/

w h i l e (count == BUFFER SIZE)
; // do no th ing

b u f f e r [i n] = nextProduced ;
i n = (i n + 1) % BUFFER SIZE ;
count++;

}

w h i l e (t r u e) {
w h i l e (count == 0)

; // do no th ing
nextConsumed = b u f f e r [out] ;
out = (out + 1) % BUFFER SIZE ;
count−−;
/∗ consume item i n nextConsumed ∗/

}

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 3/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Producer - Consumer Race Condition

count++ could be implemented as

register1 = count

register1 = register1 + 1

count = register1

count−− could be implemented as

register2 = count

register2 = register2 - 1

count = register2

Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1=count {register1 = 5}
S1: producer execute register1=register1+1 {register1 = 6}
S2: consumer execute register2=count {register2 = 5}
S3: consumer execute register2=register2-1 {register2 = 4}
S4: producer execute count=register1 {count = 6}
S5: consumer execute count=register2 {count = 4}

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 4/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Solution to Critical-Section Problem

Mutual Exclusion - If process Pi is executing in the critical
section, then no other processes can be executing in the critical
sections

Progress - If no process is executing in the critical section and
there exist some processes that wish to enter the critical section,
then the selection of the processes that will enter the critical
section next cannot be postponed indefinitely

Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter the critical sections
after a process has made a request to enter its critical section
and before that request is granted

Assume that each process executes at a nonzero speed
No assumption concerning relative speed of the N processes

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 5/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Peterson’s Solution

Two process solution (can be generalised for more than two)
Assume that the LOAD and STORE instructions are atomic;
that is, cannot be interrupted.
The two processes share two variables:

int turn;
Boolean flag[2];

The variable turn indicates whose turn it is to enter the critical
section afterwards.
The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that Pi is ready!

do {
f l a g [i] = TRUE;
t u r n = j ;
w h i l e (f l a g [j] && t u r n == j) ;
/∗ c r i t i c a l s e c t i o n ∗/
f l a g [i] = FALSE ;
/∗ r ema inde r s e c t i o n ∗/

} w h i l e (TRUE) ;

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 6/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Synchronization Hardware

Many systems provide hardware support for critical section code

Uniprocessors could disable interrupts

Currently running code would execute without preemption
Generally too inefficient on multiprocessor systems

Ü Operating systems disabling interruts are not broadly scalable

Modern machines provide special atomic (= non-interruptable)
hardware instructions

Test memory word And Set value (TAS)

Load-Store (ldstub)(e.g., SPARC V9)

Fetch and Add (e.g., x86)
Swap contents of two memory words

Compare and Swap (CAS) (e.g., SPARC V9, 68K)

Load-Link/Sore-Conditional (LL/SC) (e.g., ARM, PowerPC, MIPS)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 7/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Solution to Critical-section Problem Using Locks

do {
a c q u i r e l o c k

c r i t i c a l s e c t i o n
r e l e a s e l o c k

r e m a i n d e r s e c t i o n
} w h i l e (TRUE) ;

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 8/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

TestAndSet Instruction

Definition:

b o o l e a n TestAndSet (b o o l e a n ∗ t a r g e t)
{

b o o l e a n r v = ∗ t a r g e t ;
∗ t a r g e t = TRUE;
r e t u r n r v :
}

Solution with shared boolean variable lock, initialized to false:

do {
w h i l e (TestAndSet (& l o c k)) ; // do no th ing
// c r i t i c a l s e c t i o n
l o c k = FALSE ;
// rema inde r s e c t i o n

} w h i l e (TRUE) ;

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 9/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Swap Instruction

Definition:

v o i d Swap (b o o l e a n ∗a , b o o l e a n ∗b)
{

b o o l e a n temp = ∗a ;
∗a = ∗b ;
∗b = temp :
}

Solution with shared boolean variable lock, initialized to false.
Each process has a local boolean variable key:

do {
key = TRUE;
w h i l e (key == TRUE) Swap (& l o c k , &key) ;
// c r i t i c a l s e c t i o n
l o c k = FALSE ;
// rema inde r s e c t i o n

} w h i l e (TRUE) ;

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 10/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Bounded-waiting Mutual Exclusion with TestandSet

do {
w a i t i n g [i] = TRUE;
key = TRUE;
w h i l e (w a i t i n g [i] && key)

key = TestAndSet(& l o c k) ;
w a i t i n g [i] = FALSE ;
// c r i t i c a l s e c t i o n
j = (i + 1) % n ;
w h i l e ((j != i) && ! w a i t i n g [j])

j = (j + 1) % n ;
i f (j == i)

l o c k = FALSE ;
e l s e

w a i t i n g [j] = FALSE ;
// rema inde r s e c t i o n

} w h i l e (TRUE) ;

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 11/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Semaphore

Synchronization tool that does not necessarily require busy
waiting

Semaphore S - integer variable

Two standard operations: wait(S) and signal(S)

Originally called P() (“proberen”) and V()
(“verhogen”=increment)

Can only be accessed via two indivisible (atomic) operations

w a i t (S){
w h i l e S <= 0

; // no−op
S−−;

}

s i g n a l (S){
S++;

}

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 12/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Semaphore as General Synchronization Tool

Counting semaphore - integer value can range over an
unrestricted domain

can be used to control access to a resource consisting of a finite
number of instances

Binary semaphore - integer value can range between 0 and 1

can be simpler to implement
also known as mutex locks

Semaphore mutex ; // i n i t i a l i z e d to 1
do {

w a i t (mutex) ;
// C r i t i c a l S e c t i o n
s i g n a l (mutex) ;
// rema inde r s e c t i o n

} w h i l e (TRUE) ;

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 13/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Semaphore Implementation with no Busy waiting

With each semaphore there is an associated waiting queue. Each
entry in a waiting queue has two data items:

value (of type integer)
pointer to next record in the list

Two operations:

block - place the process invoking the operation on the appropriate
waiting queue.
wakeup - remove one of processes in the waiting queue and place it
in the ready queue

w a i t (semaphore ∗S) {
S−>v a l u e−−;
i f (S−>v a l u e < 0) {

add t h i s p r o c e s s to S−> l i s t ;
b l o c k () ;

}
}

s i g n a l (semaphore ∗S) {
S−>v a l u e ++;
i f (S−>v a l u e <= 0) {

remove a p r o c e s s P from S−> l i s t ;
wakeup (P) ;

}
}

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 14/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Semaphore Implementation

Must guarantee that no two processes can execute wait() and
signal() on the same semaphore at the same time

Thus, implementation becomes the critical section problem
where the wait and signal code are placed in the critical section.

Could now have busy waiting in critical section implementation

But implementation code is short
Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical sections
and therefore this is not a good solution.

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 15/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Deadlock and Starvation

Deadlock - two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

Let S and Q be two semaphores initialized to 1

P0
w a i t (S) ;
w a i t (Q) ;

.

.

.
s i g n a l (Q) ;
s i g n a l (S) ;

P1
w a i t (Q) ;
w a i t (S) ;

.

.

.
s i g n a l (S) ;
s i g n a l (Q) ;

Starvation - indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended
(e.g., with LIFO queue ordering)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 16/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Classical Problems of Synchronization

Bounded-Buffer Problem

Readers and Writers Problem

First Readers and Writers Problem
Second Readers and Writers Problem
Third Readers and Writers Problem

Dining-Philosophers Problem

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 17/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Bounded-Buffer Problem

N buffers, each can hold one item

Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value N

do {
// produce an i tem i n nextP

w a i t (empty) ;
w a i t (mutex) ;

// add the i tem to the b u f f e r

s i g n a l (mutex) ;
s i g n a l (f u l l) ;

} w h i l e (TRUE) ;

do {
w a i t (f u l l) ;
w a i t (mutex) ;

// remove i tem from b u f f e r to nextC

s i g n a l (mutex) ;
s i g n a l (empty) ;

// consume item i n nextC
} w h i l e (TRUE) ;

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 18/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Reader-Writers Problem

A data set is shared among a number of concurrent processes

Readers - only read the data set; they do not perform any updates
Writers - can both read and write

Problem: allow multiple readers to read at the same time. Only
one single writer can access the shared data at the same time

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 19/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

1st Readers-Writers Problem

1st Readers-Writers Problem (readers-preference):
“No reader shall be kept waiting if the share is currently opened
for reading”
Shared Data

Data set
Semaphore mutex initialized to 1
Semaphore wrt initialized to 1
Integer readcount initialized to 0

do {
w a i t (wrt) ;

// w r i t i n g i s pe r fo rmed

s i g n a l (wrt) ;
} w h i l e (TRUE) ;

do {
w a i t (mutex) ;
r e a d c o u n t ++ ;
i f (r e a d c o u n t == 1)

w a i t (wrt) ;
s i g n a l (mutex) ;

// r e ad i n g i s pe r fo rmed

w a i t (mutex) ;
readcount−−;
i f (r e a d c o u n t == 0)

s i g n a l (wrt) ;
s i g n a l (mutex) ;

} w h i l e (TRUE) ;

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 20/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

2nd & 3rd Readers-Writers Problem

2nd Readers-Writers Problem (writers-preference):
“No writer, once added to the queue, shall be kept waiting
longer than absolutely necessary”

3rd Readers-Writers Problem (bounded waiting):
“No thread shall be allowed to starve”

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 21/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Dining-Philosophers Problem

5 philosophers

Cyclic “Workflow”

Think
Get hungry
Grab for left & right chopsticks
Eat
Put down chopsticks

Ground rules

No communication
No “atomic” grabbing
No wresting

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 22/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Dining-Philosophers Problem

Näıve solution with Semaphore chopstick[5] initialized to 1

The structure of Philosopher i:

do {
w a i t (c h o p s t i c k [i]) ;
w a i t (c h o p S t i c k [(i + 1) % 5]) ;

// ea t
s i g n a l (c h o p s t i c k [i]) ;
s i g n a l (c h o p s t i c k [(i + 1) % 5]) ;
// t h i n k

} w h i l e (TRUE) ;

Ü Deadlock
Workaround

Just 4 philosophers allowed at the table
Atomic grabbing (with critical section)
Asymmetric solution (odd phil.: LR, even phil. RL)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 23/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Monitors

A high-level abstraction that provides a convenient and effective
mechanism for process synchronization
Only one process may be active within the monitor at a time

moni to r monitor−name
{
// sha r ed v a r i a b l e d e c l a r a t i o n s
p r o c e d u r e P1 (. . .) {

.
}

. . .
p r o c e d u r e Pn (. . .) {

.
}
i n i t i a l i z a t i o n code (. . .) {

.
}
}

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 24/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Schematic view of a Monitor

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 25/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Monitor with Condition Variables

Two operations on a condition variable:

x.wait () - a process that invokes the operation is suspended.
x.signal() - resumes one of processes (if any) that invoked x.wait ()

Two styles of condition variables:

Blocking condition variables give priority to a signaled thread
“Signal and wait”
Nonblocking condition variables give priority to the signaling thread.
“Signal and continue” (notify/notify all)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 26/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Solution to Dining Philosophers

Each philosopher invokes the operations pickup() and putdown()
in the following sequence:

DiningPhilosophers.pickup(i);
Eat
DiningPhilosophers.putdown(i);

moni to r D i n i n g P h i l o s o p h e r
{

enum {THINKING ,HUNGRY, EATING) s t a t e [5] ;
c o n d i t i o n s e l f [5] ;

v o i d p i c k u p (i n t i) {
s t a t e [i] = HUNGRY;
t e s t (i) ;
i f (s t a t e [i] !=EATING) s e l f [i] . w a i t ;

}

v o i d putdown (i n t i) {
s t a t e [i] = THINKING ;
// t e s t l e f t and r i g h t n e i g hbo r s
t e s t ((i +4)%5);
t e s t ((i +1)%5);

}

v o i d t e s t (i n t i) {
i f ((s t a t e [(i +4)%5] != EATING) &&

(s t a t e [i] == HUNGRY) &&
(s t a t e [(i +1)%5] != EATING)) {

s t a t e [i] = EATING ;
s e l f [i] . s i g n a l () ;

}
}

i n i t i a l i z a t i o n c o d e () {
f o r (i n t i = 0 ; i < 5 ; i ++)

s t a t e [i] = THINKING ;
}
}

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 27/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Monitor Implementation Using Semaphores

Variables

semaphore mutex ; // (i n i t i a l l y = 1) e n t r y
semaphore n e x t ; // (i n i t i a l l y = 0) re−e n t r y
i n t n e x t c o u n t = 0 ;

Each procedure F will be replaced by

w a i t (mutex) ;
. . .

body o f F ;
. . .

i f (n e x t c o u n t > 0)
s i g n a l (n e x t) ;

e l s e
s i g n a l (mutex) ;

Mutual exclusion within a monitor is ensured.

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 28/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Monitor Implementation

For each condition variable x, we have:

semaphore x sem ; // (i n i t i a l l y = 0)
i n t x c o u n t = 0 ;

The operation x.wait can be
implemented as:

x c o u n t ++;
i f (n e x t c o u n t > 0)

s i g n a l (n e x t) ;
e l s e

s i g n a l (mutex) ;
w a i t (x sem) ;
x count−−;

The operation x.signal can be
implemented as:

i f (x c o u n t > 0) {
n e x t c o u n t ++;
s i g n a l (x sem) ;
w a i t (n e x t) ;
n e x t c o u n t −−;

}

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 29/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Monitor Implementation Using Semaphores

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 30/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Solaris Synchronization

Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and multiprocessing

Uses adaptive mutexes for efficiency when protecting data from
short code segments

Uses condition variables and readers-writers locks when longer
sections of code need access to data

Uses turnstiles to order the list of threads waiting to acquire
either an adaptive mutex or reader-writer lock

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 31/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Linux Synchronization

Prior to kernel Version 2.6, disables interrupts to implement
short critical sections

Version 2.6 and later, fully preemptive

Linux rovides

semaphores
spin locks

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 32/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

Pthreads Synchronization

Pthreads API is OS-independent

It provides:

mutex locks
condition variables

Non-portable extensions include:

read-write locks
spin locks

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 33/69

Process Synchronization Process Deadlock Intro CriticalSection Semaphore SyncProblems Monitors Examples

.

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 34/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Deadlock

Problem Description

System Model

Deadlock Characterization

Methods for Handling Deadlocks

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 35/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Bridge Crossing Example

Traffic only in one direction

Each section of a bridge can be viewed as a resource

If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

Several cars may have to be backed up if a deadlock occurs

Starvation is possible

Note - Most OSes do not prevent or deal with deadlocks

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 36/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

System Model

Resource types R1, R2, . . . , Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.

Each process utilizes a resource as follows:

request
use
release

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 37/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously

Mutual exclusion: only one process at a time can use a resource

Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes

No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

Circular wait: there exists a set {P0, P1, . . . ,P0} of waiting
processes such that P0 is waiting for a resource that is held by
P1, P1 is waiting for a resource that is held by P2, . . . , Pn−1 is
waiting for a resource that is held by Pn, and Pn is waiting for a
resource that is held by P0.

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 38/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Resource-Allocation Graph

A set of vertices V and a set of edges E

V is partitioned into two types:

P = {P1, P2, . . . ,Pn}, the set consisting of all the processes in the
system
R = {R1, R2, . . . ,Rm}, the set consisting of all resource types in the
system

request edge - directed edge Pi → Rj

assignment edge - directed edge Rj → Pi

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 39/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Resource-Allocation Graph II

Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 40/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Example of a Resource Allocation Graph

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 41/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Resource Allocation Graph With A Deadlock

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 42/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Graph With A Cycle But No Deadlock

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 43/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Basic Facts

If graph contains no cycles ⇒ no deadlock

If graph contains a cycle ⇒
if only one instance per resource type, then deadlock
if several instances per resource type, possibility of deadlock

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 44/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock state

Allow the system to enter a deadlock state and then recover

Ignore the problem and pretend that deadlocks never occur in
the system; used by most operating systems, including UNIX

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 45/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Deadlock Prevention

Deadlocks can be prevented by ensuring that at least one of the
conditons cannot hold

Mutual Exclusion

Must hold for nonsharable resources (e.g., write access, printer
device, . . .)
Not required for sharable resources (e.g., read access)

Hold and Wait - must guarantee that whenever a process
requests a resource, it does not hold any other resources

Require process to request and be allocated all its resources before
it begins execution, or allow process to request resources only when
the process has none
Low resource utilization; starvation possible

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 46/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Deadlock Prevention II

No Preemption -

If a process that is holding some resources requests another resource
that cannot be immediately allocated to it, then all resources
currently being held are released
Preempted resources are added to the list of resources for which the
process is waiting
Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting

Circular Wait - impose a total ordering of all resource types, and
require that each process requests resources in an increasing
order of enumeration

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 47/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Deadlock Avoidance

Requires that the system has some additional a priori information
available

Simplest and most useful model requires that each process
declare the maximum number of resources of each type that it
may need

The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition

Resource-allocation state is defined by the number of available
and allocated resources, and the maximum demands of the
processes

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 48/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Safe State

When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state

System is in safe state if there exists a sequence 〈P1, P2, . . . ,Pn〉
of ALL the processes in the systems such that for each Pi , the
resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj , with j < i

That is:

If Pi resource needs are not immediately available, then Pi can wait
until all Pj have finished
When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate
When Pi terminates, Pi+1 can obtain its needed resources, and so
on

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 49/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Safe, Unsafe , Deadlock State

If a system is in safe state ⇒ no deadlocks

If a system is in unsafe state ⇒ possibility of deadlock

Avoidance ⇒ ensure that a system will never enter an unsafe
state.

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 50/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Avoidance algorithms

Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource type

Use the banker’s algorithm

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 51/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Resource-Allocation Graph Scheme

Claim edge Pi → Rj indicated that process Pi may request
resource Rj , represented by a dashed line

Claim edge converts to request edge when a process requests a
resource

Request edge converted to an assignment edge when the
resource is allocated to the process

When a resource is released by a process, assignment edge
reconverts to a claim edge

Resources must be claimed a priori in the system

The request can be granted only if converting the request edge
to an assignment edge does not result in the formation of a
cycle in the resource allocation graph (=unsafe state)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 52/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Unsafe State In Resource-Allocation Graph

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 53/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Banker’s Algorithm

Multiple instances

Each process must a priori claim maximum use

When a process requests a resource it may have to wait

When a process gets all its resources it must return them in a
finite amount of time

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 54/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

Available: Vector of length m. If Available[j]=k, there are k
instances of resource type Rj available

Max: An n x m matrix. If Max[ij] = k, then process Pi may
request at most k instances of resource type Rj

Allocation: An n x m matrix. If Allocation[ij] = k then Pi is
currently allocated k instances of Rj

Need: An n x m matrix. If Need[ij] = k, then Pi may need k
more instances of Rj to complete its task
Need[ij] = Max[ij] - Allocation[ij]

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 55/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Safety Algorithm with O(m × n2)

1 Let Work and Finish be vectors of length m and n
Initialize:

(a) Work = Available
(b) Finish[i] = false for i = 0, 1, . . . , n − 1

2 Find an index i such that both:

(a) Finish[i] == false
(b) Needi ≤Work

If no such i exists, go to step 4

3 Work = Work + Allocationi

Finish[i] = true
go to step 2

4 If Finish[i] == true for all i, then the system is in a safe state

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 56/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi . If Requesti [j] = k then
process Pi wants k instances of resource type Rj

1 If Requesti ≤ Needi go to step 2. Otherwise raise error
condition, since process has exceeded its maximum claim

2 If Requesti ≤ Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3 Pretend to allocate requested resources to Pi by modifying the
state as follows:
Available = Available − Request;
Allocationi = Allocationi + Requesti ;
Needi = Needi − Requesti ;

• If safe ⇒ the resources are allocated to Pi

• If unsafe ⇒ Pi must wait, and the old resource-allocation state is
restored

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 57/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Example of Banker’s Algorithm

5 processes P0 through P4

3 resource types A (10 ×), B(5 ×), and C (7 ×)

Snapshot at time T0:
Allocation Max Need Available

A B C A B C A B C A B C
P0 0 1 0 7 5 3 7 4 3 3 3 2
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

The system is in a safe state since the sequence
〈P1, P3, P4, P2, P0〉 satisfies safety criteria

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 58/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Example: P1 Request(1,0,2)

Check that Request ≤ Available
(that is (1, 0, 2) ≤ (3, 3, 2)⇒ true)

Allocation Max Need Available
A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 2 3 0
P1 3 0 2 3 2 2 0 2 0
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

Executing safety algorithm shows that sequence
〈P1, P3, P4, P0, P2〉 satisfies safety requirement

Can request for (3,3,0) by P4 be granted?
(No, resource not available)

Can request for (0,2,0) by P0 be granted?
(No, no safe state)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 59/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Deadlock Detection

Allow system to enter deadlock state

Detection algorithm

Recovery scheme

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 60/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Single Instance of Each Resource Type

Maintain wait-for graph

Nodes are processes
The corresponding resource-allocation graph contains two edges
Pi → Rq und Rq → Pj

Wait-for graph: Pi → Pj ; if Pi is waiting for Pj

Periodically invoke an algorithm that searches for a cycle in the
graph. If there is a cycle, there exists a deadlock

An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 61/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Resource-Allocation Graph and Wait-for Graph

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 62/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Several Instances of a Resource Type

Available: A vector of length m indicates the number of
available resources of each type.

Allocation: An n x m matrix defines the number of resources of
each type currently allocated to each process.

Request: An n x m matrix indicates the current request of each
process. If Request[ij] = k, then process Pi is requesting k more
instances of resource type Rj .

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 63/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Detection Algorithm with O(m × n2)

1 Let Work and Finish be vectors of length m and n
Initialize:

(a) Work = Available
(b) For i = 0, 1, . . . , n − 1

if Allocationi 6= 0
then Finish[i] = false;
else Finish[i] = true;

2 Find an index i such that both:
(a) Finish[i] == false
(b) Requesti ≤Work

If no such i exists, go to step 4
3 Work = Work + Allocationi

Finish[i] = true
go to step 2

4 If Finish[i] == false, for some i , 0 ≤ i < n, then the system is in
deadlocked state.

5 If Finish[i] == false, then Pi is deadlocked.
c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 64/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Example of Detection Algorithm

5 processes P0 through P4

3 resource types A (7 ×), B(2 ×), and C (6 ×)

Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

Sequence 〈P0, P2, P3, P1, P4〉 will result in Finish[i] = true for all
i

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 65/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Example of Detection Algorithm II

5 processes P0 through P4

3 resource types A (7 ×), B(2 ×), and C (6 ×)

P2 requests an additional instance of type C

Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 1
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

State of system?

Can reclaim resources held by process P0, but insufficient resources
to fulfill other processes requests
Deadlock exists, consisting of processes P1, P2, P3, and P4

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 66/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Detection-Algorithm Usage

When, and how often, to invoke depends on:

How often a deadlock is likely to occur?
How many processes will need to be rolled back?

one for each disjoint cycle

One request may create many cycles in the resource graph

Each cycle is completed by the most recent request
Each cycle was “caused” by the one identifiable process.

If detection algorithm is invoked arbitrarily, there may be many
cycles in the resource graph and so we would not be able to tell
which of the many deadlocked processes “caused” the deadlock

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 67/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Recovery from Deadlock: Process Termination

Abort all deadlocked processes

Abort one process at a time until the deadlock cycle is eliminated

In which order should we choose to abort?

Priority of the process
How long process has computed, and how much longer to
completion
Resources the process has used
Resources process needs to complete
How many processes will need to be terminated
Is process interactive or batch?

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 68/69

Process Synchronization Process Deadlock Deadlock AllocGraph Prevention Avoidance Detection Recovery

Recovery from Deadlock: Resource Preemption

Selecting a victim - minimize cost

Rollback - return to some safe state, restart process for that
state

Starvation - same process may always be picked as victim,
include number of rollback in cost factor

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Process Coordination 69/69

	Process Coordination
	Process Synchronization
	Intro
	CriticalSection
	Semaphore
	SyncProblems
	Monitors
	Examples

	Process Deadlock
	Deadlock
	AllocGraph
	Prevention
	Avoidance
	Detection
	Recovery

