
Betriebssysteme
Memory Management

Lehrstuhl Systemarchitektur

WS 2009/2010

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 1/49

Memory Management Strategies

• Background

• Swapping

• Allocation

• Relocation

• Segmentation

• Paging

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 2/49



Background

• Program must be brought (from disk) into memory and placed
within a process for it to be run

• Main memory and registers are the only storage that the CPU
can access directly

• Register access in one CPU clock (or less)

• Main memory can take many cycles

• Cache sits between main memory and CPU registers

• Protection of memory required to ensure correct operation

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 3/49

Memory Partitioning

• Main memory usually split into two partitions:
• Resident operating system, usually held in low memory with

interrupt vector
• User processes held in high memory

• Registers used to protect user processes from each other, and
from changing operating-system code and data
• Base register contains value of smallest physical address
• Limit register contains range of logical addresses

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 4/49



Simple Protection with Base and Limit Registers

• A pair of base and limit registers define the logical address space

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 5/49

Swapping

• A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution

• Backing store - fast disk large enough to accommodate copies of
all memory images for all users; must provide direct access to
these memory images

• Roll out, roll in - swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed

• Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

• System maintains a ready queue of ready-to-run processes which
have memory images on disk

• Modified versions of swapping are found on many systems (i.e.,
UNIX, Linux, and Windows)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 6/49



Schematic View of Swapping

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 7/49

Contiguous Allocation

• Multiple-partition allocation
• Hole - block of available memory; holes of various size are scattered

throughout memory
• When a process arrives, it is allocated memory from a hole large

enough to accommodate it
• Operating system maintains information about:
• allocated partitions
• free partitions (hole)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 8/49



Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes

• First-fit: Allocate the first hole that is big enough; fastest
allocation policy, produces leftover holes of variable size

• Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

• Worst-fit: Allocate the largest hole; must also search entire list;
Produces the largest leftover hole

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 9/49

Fragmentation

• External Fragmentation - total memory space exists to satisfy a
request, but it is not contiguous

• Internal Fragmentation - allocated memory may be slightly
larger than requested memory; this size difference is memory
internal to a partition, but not being used

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory together in one

large block
• Compaction is possible only if relocation is dynamic, and is done at

execution time
• I/O problem
• Lock job in memory while it is involved in I/O
• Do I/O only into OS buffers

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 10/49



Binding of Instructions and Data to Memory

• Address binding of instructions and data to memory addresses
can happen at three different stages
• Compile time: If memory location known a priori, absolute code can

be generated;

Ü must recompile code if starting location changes

• Load time: Must generate relocatable code, if memory location is
not known at compile time

• Execution time: Binding delayed until run time, if the process can
be moved during its execution from one memory segment to
another. Need hardware support for address maps (e.g., base and
limit registers)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 11/49

Multistep Processing of a User Program

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 12/49



Logical vs. Physical Address Space

• The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management
• Logical address - generated by the CPU; also referred to as virtual

address
• Physical address - address seen by the memory unit

• Logical and physical addresses are the same in compile-time and
load-time address-binding schemes; logical (virtual) and physical
addresses differ in execution-time address-binding scheme

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 13/49

Memory-Management Unit (MMU)

• Hardware device that maps virtual to physical address

• In a MMU with relocation registers, the value of the register is
added to every address generated by a user process at the time
it is sent to memory

• The user program deals with logical addresses; it never sees the
real physical addresses

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 14/49



Dynamic Relocation using a Relocation Register

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 15/49

Hardware Support for Relocation and Limit Registers

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 16/49



Dynamic Loading

• Routine is not loaded until it is called

• Routine is is kept on disk in a relocatable load format

• Better memory-space utilization
• Unused routine is never loaded
• Overlays allow the loading of modules for the current phase of

execution

• Useful when large amounts of code are needed to handle
infrequently occurring cases

• No special support from the operating system is required
implemented through program design (relocatable linking loader)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 17/49

Overlays

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 18/49



Dynamic Linking (Shared Libraries)

• Routine is not linked until it is called (linking is postponed)

• Small piece of code, stub, used to locate the appropriate
memory-resident library routine (or how to load the library
routine)

• Stub replaces itself with the address of the routine, and executes
the routine

• Operating system needed to check if routine is already in other
processes’ memory space

• Dynamic linking is particularly useful because it supports library
updates

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 19/49

Segmentation

• Memory-management scheme that supports user view of memory

• A program is a collection of segments
• A segment is a logical unit such as:
• main program
• procedure
• function
• method
• object
• local/global variables
• common block
• stack
• symbol table
• arrays

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 20/49



Users View of a Program

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 21/49

Logical View of Segmentation

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 22/49



Segmentation Architecture

• Logical address consists of a two tuple:
• < SegmentNumber ,Offset >
• offset = displacement (d)

• Segment table - maps two-dimensional physical addresses;
each table entry has:
• base - contains the starting physical address where the segments

reside in memory
• limit - specifies the length of the segment

• Segment-table base register (STBR) points to the segment
tables location in memory

• Segment-table length register (STLR) indicates number of
segments used by a program
• segment number s is legal if s < STLR

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 23/49

Segmentation Architecture II

• Protection
• With each entry in segment table associate:
• validation bit = 0 ⇒ illegal segment
• read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at
segment level

• Since segments vary in length, memory allocation is a dynamic
storage-allocation problem

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 24/49



Segmentation Hardware

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 25/49

Example of Segmentation

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 26/49



Paging

• Logical address space of a process can be noncontiguous; process
is allocated physical memory whenever the latter is available

• Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8,192 bytes)

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size n pages, need to find n free frames and
load program

• Set up a page table to translate logical to physical addresses

• Internal fragmentation (50% of page size on the overage)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 27/49

Address Translation Scheme

• Address generated by CPU is divided into:
• Page number (p) - used as an index into a page table which

contains base address of each page in physical memory
• Page offset (d) - combined with base address to define the physical

memory address that is sent to the memory unit

• For given logical address space 2m and page size 2n

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 28/49



Paging Hardware

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 29/49

Paging Model of Logical and Physical Memory

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 30/49



Paging Example

32-byte memory and 4-byte pages

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 31/49

Free Frames

Before allocation After allocation

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 32/49



Implementation of Page Table

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PRLR) indicates size of the page
table

• In this scheme every data/instruction access requires two
memory accesses, one for the page table and one for the
data/instruction.

• The two memory access problem can be solved by the use of a
special fast-lookup hardware cache made of associative memory
called translation look-aside buffers (TLBs)

• Some TLBs store address-space identifiers (ASIDs) in each TLB
entry
• Uniquely identifies each process to provide address-space protection

for that process
• Avoids TLB flush and reload at each address-space switch

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 33/49

Associative Memory

• Associative memory - parallel search for translation (p, d)
• If p is in associative register, get frame # out
• Otherwise get frame # from page table in memory

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 34/49



Effective Access Time

• Associative lookup takes τ time units (e.g., 1 ns)

• Assume memory cycle time is µ time units (e.g., 300 ns)

• Hit ratio α - percentage of times that a page number is found in
the (e.g., 99 % ) associative registers; ratio related to number of
associative registers

• Effective Access Time (EAT)
EAT = (τ + µ) · α + (τ + 2 · µ) · (1 − α) = τ + 2 · µ− µ · α

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 35/49

Memory Protection with Valid/Invalid Bit

• Memory protection implemented by associating protection bit
with each frame

• Valid-invalid bit attached to each entry in the page table:
• “valid” indicates that the associated page is in the process’ logical

address space, and is thus a legal page
• “invalid” indicates that the page is not in the process’ logical

address space

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 36/49



Shared Pages

• Shared code
• One copy of read-only (reentrant) code shared among processes

(i.e., text editors, compilers, window systems).
• Shared code must appear in same location in the logical address

space of all processes (exception: position-independent code (PIC))

• Shared Data
• Data with pointers must appear in same location in the logical

address space of all processes
• Data without pointers can appear anywhere in the logical address

space
• Synchronization is required for consistent read/write access

• Private code and data
• Each process keeps a separate copy of the code and data
• The pages for the private code and data can appear anywhere in the

logical address space

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 37/49

Shared Pages Example

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 38/49



Structure of the Page Table

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 39/49

Hierarchical Page Tables

• Break up the logical address space into multiple page tables

• A simple technique is a two-level page table

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 40/49



Two-Level Paging Example

• A logical address (on 32-bit machine with 4K page size) is
divided into:
• a page number consisting of 20 bits
• a page offset consisting of 12 bits

• Since the page table is paged, the page number is further
divided into:
• a 10-bit page number
• a 10-bit page displacement for level 2 page

• Thus, a logical address is as follows:

where p1 is an index into the outer page table, and p2 is the
displacement within the page of the outer page table

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 41/49

Top-Down Address-Translation Scheme

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 42/49



Top-Down Three-level Paging Scheme

• Example: Linux (with 0 bit middle directory for 32 bit)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 43/49

Bottom-Up Paging Scheme

• 4-Mbyte user page table is continuous in virtual space

• If mapping is not in TLB, load TLB from physical root page
table

• Example: MIPS and Alpha

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 44/49



Hashed Page Tables

• Common in address spaces > 32 bits
• The virtual page number is hashed into a page table
• This page table contains a chain of elements hashing to the same

location
• Virtual page numbers are compared in this chain searching for a

match
• If a match is found, the corresponding physical frame is extracted

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 45/49

Linear Inverted Page Table

• One entry for each real page of memory

• Entry consists of the virtual address of the page stored in that
real memory location, with information about the process that
owns that page

• Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 46/49



Hashed Inverted Page Table

• Use hash anchor table to limit the search to one - or at most a
few - page-table entries (e.g., PPC, PA-RISC)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 47/49

Hashed Inverted Page Table Lookup

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 48/49



VM Intro

• Problem Description

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection

• Recovery from Deadlock

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Memory Management 49/49


	Memory Management
	Memory Management Strategies
	Intro
	Swapping
	Allocation
	Relocation
	Segmentation
	Paging

	Virtual Memory Management
	Demand Paging



