
Chapter 4.9: Virtual-Memory Management

Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

2 07.12.2009 © 2009 Karlsruhe Institute of Technology, System Architecture Group

Backgroundg

Virtual memory – separation of user logical memory from
h i lphysical memory.

Only part of the program needs to be in memory for execution
Logical address space can therefore be much larger than physicalLogical address space can therefore be much larger than physical
address space
Allows address spaces to be shared by several processes
Allows for more efficient process creation

Virtual memory can be implemented via:Virtual memory can be implemented via:
Demand paging
Demand segmentationDemand segmentation

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

3 07.12.2009

Transfer of a Paged Memory to Contiguous Disk Space

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

4 07.12.2009

Virtual Memory That is Larger Than Physical Memory



Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

5 07.12.2009

Virtual-address Spacep

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

6 07.12.2009

Shared Library Using Virtual Memoryy g y

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

7 07.12.2009

Page Fetch Policyg y

Demand paging transfers a page to RAM if a reference
to that page has raised a page faultto that page has raised a page fault

CON: “Many” initial page faults when a task starts
PRO: You only transfer what you really need

Pre-Paging transfers more pages from disk to RAM
additionally to the demanded pageadditionally to the demanded page

PRO: improves disk I/O throughput by reading chunks
CON: Pre-paging is highly speculative p g g g y p

wastes I/O bandwidth if page will never be used
can destroy the working set of another task in case of page
stealingstealing

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

8 07.12.2009

Demand Pagingg g

Bring a page into memory only when it is needed
L I/O d dLess I/O needed
Less memory needed
Faster responseFaster response
More users

Page is needed  reference to it
invalid reference  abort

t i b i tnot-in-memory  bring to memory

Lazy swapper – never swaps a page into memory unless
page will be neededpage will be needed

Swapper that deals with pages is a pager

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

9 07.12.2009

Valid-Invalid Bit (Present Bit)()

With each page table entry a valid–invalid bit is associated
(v  in-memory, i  not-in-memory)(v  in memory, i  not in memory)
Initially valid–invalid bit is set to i on all entries
Example of a page table snapshot:

v
v

Frame # valid-invalid bit

v
v
ii

i

….

During address translation if valid invalid bit in page table entry

i
i

page table

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

10 07.12.2009

During address translation, if valid–invalid bit in page table entry
is i  page fault

Page Table When Some Pages Are Not in Main Memory

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

11 07.12.2009

Page Faultg

If there is a reference to a page, first reference to
that page will trap to operating system:

page fault
O ti t l k t th t bl t d id1. Operating system looks at another table to decide:

Invalid reference  abort
Just not in memoryy

2. Get empty frame
3. Swap page into frame
4. Reset tables
5. Set validation bit = v
6. Restart the instruction that caused the page fault

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

12 07.12.2009

Page Fault (Cont.)g ()

Problems with instruction restart instruction
bl kblock move

auto increment/decrement multiple locations
Solutions for consistent restartSolutions for consistent restart

Touch all relevant pages before operation starts
Keep all modified data in registers until page faults can’t take p g p g
place

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

13 07.12.2009

Steps in Handling a Page Faultp g g

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

14 07.12.2009

Performance of Demand Pagingg g

Page Fault Rate 0  p  1.0
if 0 f ltif p = 0 no page faults
if p = 1, every reference is a fault

Effective Access Time (EAT)
EAT = (1 – p) x memory access(p) y

+ p (page fault overhead
+ page fault service time page fault service time
+ restart overhead

))

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

15 07.12.2009

Demand Paging Exampleg g p

Memory access time = 200 nanoseconds

Average page-fault service time = 8 milliseconds

EAT = (1 – p) x 200 + p (8 milliseconds)
(1 200 8 000 000= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

16 07.12.2009

Benefits of Paged Virtual Memoryg y

Paged virtual memory allows other benefits during process
creation:creation:

Copy on Write- Copy-on-Write

- Memory-Mapped Files (later)Memory Mapped Files (later)

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

17 07.12.2009

Copy-on-Writepy

Copy-on-Write (COW) allows both parent and child
processes to initially share the same pages in memoryprocesses to initially share the same pages in memory

If either process modifies a shared page, only then is theIf either process modifies a shared page, only then is the
page copied

COW allows more efficient process creation as only
modified pages are copied

Free pages are allocated from a pool of zeroed-out pagesg g

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

18 07.12.2009

Before Process 1 Modifies Page Cg

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

19 07.12.2009

After Process 1 Modifies Page Cg

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

20 07.12.2009

Page Replacementg p

Page replacement – find the most fitting page
i b t t ll iin memory, but not really in use

 page it out
Algorithm (low administrative overhead)Algorithm (low administrative overhead)
Performance – want an algorithm which will result in
minimum number of page faults
Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk
Same page may be brought into memory severalSame page may be brought into memory several
times

 Large virtual memory can be provided on a g y p
smaller physical memory

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

21 07.12.2009

Need For Page Replacementg p

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

22 07.12.2009

Basic Page Replacementg p

1 Find the location of the desired page on1. Find the location of the desired page on
disk

2. Find a free frame:
- If there is a free frame, use it

If th i f f- If there is no free frame, use a page
replacement algorithm to select a victim
frameframe

3 Bring the desired page into the (newly) free3. Bring the desired page into the (newly) free
frame; update the page and frame tables

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

23 07.12.2009

4. Restart the process

Page Replacementg p

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

24 07.12.2009

Replacement Policyp y

Not all page frames in memory can be replaced
Some pages are pinned to specific page frames:Some pages are pinned to specific page frames:

Most of the kernel is resident, i.e. pinned
some DMA can only access physical addresses, i.e. their
b ff t b i d t (I/O I t l k)buffers must be pinned, too (I/O Interlock)
A real-time task might have to pin some/all of its pages
(otherwise no one can guarantee its deadline)

OS might decide that set of pages considered for next
replacement should be:

Limited to frames of the task having initiated page fault
 local page replacement

Unlimited, i.e. also frames belonging to other tasks
 global page replacement

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

25 07.12.2009

Cleaning Policyg y

When should we page-out a “dirty” page?

Demand Cleaning
a page is transferred to disk only when its hosting page frame
has been selected for replacement by the replacement policyhas been selected for replacement by the replacement policy

 page faulting activity must wait for 2 page transfers (out and in)

• Pre-Cleaning
– dirty pages are transferred to disk before their page frames are

neededneeded

 transferring large clusters can improve disk throughput, but it
makes few sense to transfer pages to disk if most of them will
be modified again before they will be replaced

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

26 07.12.2009

Cleaning Policyg y

Good compromise achieved with page buffering

Recall that pages chosen for replacement are
maintained either in a free (unmodified) list or in a

difi d li tmodified list

Pages of the modified list can be transferred to disk
periodically

 A good compromise since:g p
not all dirty pages are transferred to disk, only those that
have been chosen for next replacement
t f i i d i b t h (i i di k I/O)transferring pages is done in batch (improving disk I/O)

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

27 07.12.2009

Page Replacement Algorithmsg p g

Want lowest page-fault rate

Evaluate algorithm by running it on a g y g
particular string of memory references
(reference string) and computing the number
f f lt th t t iof page faults on that string

I ll l th f t i iIn all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

28 07.12.2009

Graph of Page Faults Versus The Number of
Frames

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

29 07.12.2009

First-In-First-Out (FIFO) Algorithm() g

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

30 07.12.2009

FIFO Anomalyy
Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
3 frames (3 pages can be in memory at a time per process)

11 4 5

2

3

2

3

1

2

3

4

9 page faults

4 frames

33 2 4

11 5 4

2

3

2

3

5

1

2

4

5 10 page faults

Belad ’s Anomal more frames more page fa lts

33 2

44 3

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

31 07.12.2009

Belady’s Anomaly: more frames  more page faults

FIFO Illustrating Belady’s Anomalyg y y

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

32 07.12.2009

Optimal Algorithmp g

Replace page that will not be used for longest period of
timetime
4 frames example

1 2 3 4 1 2 5 1 2 3 4 51, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 41

2

3

4

6 page faults

3

4 5

How do you know this? (Oracle?)
Used for measuring how well your algorithm performs

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

33 07.12.2009

Optimal Page Replacementp g p

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

34 07.12.2009

Least Recently Used (LRU) Algorithmy () g

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

5

2

1

2

1

2

1

2

1

2

4

3

3

4

5

4

5

3

4

3

Counter implementation
Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the
counter
When a page needs to be changed, look at the counters to
determine which are to change

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

35 07.12.2009

LRU Page Replacementg p

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

36 07.12.2009

LRU Stack

Stack implementation – keep a stack of page numbers in a
double link form:double link form:

Page referenced:

move it to the topmove it to the top
requires 6 pointers to be changed

No search for replacementNo search for replacement

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

37 07.12.2009

LRU Stack

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

38 07.12.2009

LRU Approximation Algorithmspp g

Reference bit
With each page associate a bit initially = 0With each page associate a bit, initially = 0
When page is referenced bit set to 1
Replace the one which is 0 (if one exists)

We do not know the order, howeverWe do not know the order, however

Second chance
Need reference bit
Clock replacementClock replacement
If page to be replaced (in clock order) has reference bit = 1 then:

set reference bit 0
leave page in memoryleave page in memory
replace next page (in clock order), subject to same rules

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

39 07.12.2009

Second-Chance (clock) Page-Replacement Algorithm

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

40 07.12.2009

Counting Algorithmsg g

Keep a counter of the number of references
that have been made to each page

LFU Al ith l ith ll tLFU Algorithm: replaces page with smallest
count

MFU Algorithm: based on the argument that
the page with the smallest count was probably t e page t t e s a est cou t as p obab y
just brought in and has yet to be used

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

41 07.12.2009

Allocation of Frames

Each process needs minimum number of pagesEach process needs minimum number of pages
Example: IBM 370 – 6 pages to handle SS MOVE
instruction:

instruction is 6 bytes, might span 2 pages
2 pages to handle from
2 pages to handle to

Two major allocation schemes
fi d ll tifixed allocation
priority allocation

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

42 07.12.2009

Fixed Allocation

Equal allocation – For example, if there are 100
frames and 5 processes, give each process 20frames and 5 processes, give each process 20
frames.
Proportional allocation – Allocate according to the p g
size of process

ps ii  process of size 64m

s
m

sS

i

i




frames of number total
10
127
10

2 



s
si

m
S
spa i

ii  for allocation

5964
137
127

564
137
10

2

1





a

a

137

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

43 07.12.2009

Priority Allocationy

Use a proportional allocation scheme using
priorities rather than size

If P t f ltIf process Pi generates a page fault,
select for replacement one of its frames
select for replacement a frame from a process with lowerselect for replacement a frame from a process with lower
priority number

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

44 07.12.2009

Global vs. Local Allocation

Global replacement – process selects a p p
replacement frame from the set of all frames;
one process can take a frame from another
Local replacement – each process selects
from only its own set of allocated frames

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

45 07.12.2009

Thrashingg

If a process does not have “enough” pages, the p g p g ,
page-fault rate is very high. This leads to:

low CPU utilization
operating system thinks that it needs to increase the
degree of multiprogramming
another process added to the systemanother process added to the system

Thrashing  a process is busy swapping pages in
and out

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

46 07.12.2009

Thrashing (Cont.)

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

47 07.12.2009

Demand Paging and Thrashing

Why does demand paging work?Why does demand paging work?
Locality model

Process migrates from one locality to anotherProcess migrates from one locality to another
Localities may overlap

Why does thrashing occur?
 size of locality > total memory sizey y

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

48 07.12.2009

Locality In A Memory-Reference Patterny y

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

49 07.12.2009

Working-Set Modelg

  working-set window  a fixed number of page
freferences

Example: 10,000 instruction (instruction =? page_ref)
WSS (working set of Process P) =WSSi (working set of Process Pi) =
total number of pages referenced in the most recent
 (varies in time) (varies in time)

if  too small will not encompass entire locality
if  too large will encompass several localities
if  =   will encompass entire program

D =  WSSi  total demand frames
if D > m  Thrashing
Policy if D > m, then suspend one of the processes

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

50 07.12.2009

Working-set modelg

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

51 07.12.2009

Keeping Track of the Working Setp g g

Approximate with interval timer + a reference bit
Example:  = 10,000

Timer interrupts after every 5000 time units
Keep in memory 2 bits for each pageKeep in memory 2 bits for each page
Whenever a timer interrupts copy and sets the values of all
reference bits to 0
If one of the bits in memory == 1  page in working set

Not accurate, because window is moving in large steps
 Improvement = 10 bits and interrupt every 1000 time units

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

52 07.12.2009

Page-Fault Frequency Schemeg q y

Establish “acceptable” page-fault rate
If actual rate too low, process should lose frames
If actual rate too high, process should gain frames

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

53 07.12.2009

Solaris

Maintains a list of free pages to assign faulting processes
f (f f)Lotsfree – threshold parameter (amount of free memory) to

begin paging
D f th h ld t t i i iDesfree – threshold parameter to increasing paging (desired free)

Minfree – threshold parameter to being swapping
P i i f d b tPaging is performed by pageout process
Pageout scans pages using modified clock algorithm
S t i th t t hi h d ThiScanrate is the rate at which pages are scanned. This
ranges from slowscan to fastscan
Pageout is called more frequently depending upon thePageout is called more frequently depending upon the
amount of free memory available

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

54 07.12.2009

Solaris 2 Page Scannerg

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

55 07.12.2009

Allocating Kernel Memoryg y

Treated differently from user memory
Of f fOften allocated from a free-memory pool

Kernel requests memory for structures of varying sizes
Some kernel memory needs to be contiguousSome kernel memory needs to be contiguous

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

56 07.12.2009

Buddy Systemy y

Allocates memory from fixed-size segment consisting of
physically contiguous pagesphysically-contiguous pages
Memory allocated using power-of-2 allocator

Satisfies requests in units sized as power of 2Satisfies requests in units sized as power of 2
Request rounded up to next highest power of 2
When smaller allocation needed than is available, current chunk ,
split into two buddies of next-lower power of 2

Continue until appropriate sized chunk available

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

57 07.12.2009

Buddy System Allocatory y

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

58 07.12.2009

Slab Allocator

Alternate strategy
SSlab is one or more physically contiguous pages
Cache consists of one or more slabs
Single cache for each unique kernel data structure

Each cache filled with objects – instantiations of the data structure

Wh h t d fill d ith bj t k d fWhen cache created, filled with objects marked as free
When structures stored, objects marked as used
If l b i f ll f d bj t t bj t ll t d fIf slab is full of used objects, next object allocated from
empty slab

If no empty slabs new slab allocatedIf no empty slabs, new slab allocated

Benefits include no fragmentation, fast memory request
satisfaction

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

59 07.12.2009

satisfaction

Slab Allocation

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

60 07.12.2009

Working Sets and Page Fault Rates

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

61 07.12.2009

Other Issues -- Memory-Mapped Filesy pp

Memory-mapped file I/O allows file I/O to be treated as
routine memory access by mapping a disk block to a pageroutine memory access by mapping a disk block to a page
in memory

A file is initially read using demand paging. A page-sized
portion of the file is read from the file system into a physicalportion of the file is read from the file system into a physical
page. Subsequent reads/writes to/from the file are treated
as ordinary memory accesses.

Simplifies file access by treating file I/O through memory y g g y
rather than read() write() system calls
Also allows several processes to map the same file

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

62 07.12.2009

allowing the pages in memory to be shared

Memory Mapped Filesy pp

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

63 07.12.2009

Memory-Mapped Shared Memory in
Windows

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

64 07.12.2009

Other Issues – Page Sizeg

Page size selection must take into consideration:
fragmentation
table size
I/O h dI/O overhead
locality

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

65 07.12.2009

Other Issues – TLB Reach

TLB Reach - The amount of memory accessibleTLB Reach The amount of memory accessible
from the TLB
TLB Reach = (TLB Size) X (Page Size)TLB Reach (TLB Size) X (Page Size)
Ideally, the working set of each process is
stored in the TLB

Otherwise there is a high degree of page faults

Increase the Page Size
This may lead to an increase in fragmentation as not
all applications require a large page size

Provide Multiple Page SizesProvide Multiple Page Sizes
This allows applications that require larger page sizes
the opportunity to use them without an increase in

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

66 07.12.2009

pp y
fragmentation

Other Issues – Program Structureg

Program structure
Int[128,128] data;
Each row is stored in one page (e.g., 512 bytes page size)
Program 1 g

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i j] = 0;data[i,j] = 0;

128 x 128 = 16,384 page faults

– Program 2
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i,j] = 0;

Betriebssysteme WS 09/10

4.9. Virtual -Memory Management

67 07.12.2009

128 page faults

