
Betriebssysteme/Systemarchitektur WS 09/10Betriebssysteme/Systemarchitektur WS 09/10
Part V: Files Systems

F. Bellosa
G. Liefländer

A Silberschatz et al

Virtual Memory Management

A. Silberschatz et al.

r
B

au
m

un
g

Virtual-Memory Management

©
 P

et
er

© Peter Baumung

Chapter 5.10: File Systemsp y

Motivation, Introduction
File Management
Directory Managementy g
Objectives:

To explain the function of file systemsTo explain the function of file systems

To describe the interfaces to file systems

To discuss file-system design tradeoffsTo discuss file-system design tradeoffs

access methods

file sharingfile sharing

file locking

Betriebssysteme WS 09/10

5 File Systems

2 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Motivation:

OS Abstraction HW Resource
h d CProcesses, Threads CPU

Address Space Main Memory (RAM)

Files are the third major OS-provided abstraction

Files Disk, CD, …

Files are the third major OS-provided abstraction
over HW resources

Do we still need files and a classical file system orDo we still need files and a classical file system or
better a database with an object store?

Betriebssysteme WS 09/10

5 File Systems

3 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Motivation

Enable the storing of large amount of data
File - contiguous logical address space

File types:
data

numeric

character

binary

ProgramProgram

Store data/program consistently & persistently

Look-up easily previously stored data/program

Betriebssysteme WS 09/10

5 File Systems

4 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

File Systemsy

Most files are still located on disks which are really
messy physical devices:y p y

Errors, bad blocks, redundant arrays of disks (RAID), …

Job of an OS is to hide this mess from higher level g
software

Low-level device control (initiate a disk read, etc.)

High-level abstractions (read file)

OS might provide different levels of disk access to
different clients (applications)different clients (applications)

Physical disk (surface, cylinder, sector)

Logical disk =partition(disk block#)Logical disk partition(disk block#)

Logical volume=multiple partitions (volume block#)

Logical file (file block, record, byte#)

Betriebssysteme WS 09/10

5 File Systems

5 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

g (, , y)

Overview File Systemy

OS may support multiple file systems
Instances of the same FS typeInstances of the same FS type

Different FS types, e.g. EXt2 & Reiser

All file systems are typically bound into a single
namespace

All Fil

Often hierarchical as a rooted tree

Internal node = directory
All Files

group1 groupg file f

Internal node directory
(mount point)

group1 ... groupg file f

file 1 file 2 ... file n file k ... file s

Betriebssysteme WS 09/10

5 File Systems

6 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Hierarchy of File Systemsy y

Why hierarchical?

 Alternative ways of organizing a name space

Betriebssysteme WS 09/10

5 File Systems

7 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Alternative ways of organizing a name space

Why not a single file system?

File

Collection of related information
Executable programExecutable program

Text files

C d bi iCompressed binary images

Structured document

…

A file has a set of attributes, i.e. its meta data

A ib diff b OS d FSAttributes differ between OSes and FSs, e.g.:
Name, identifier
TypeType
Location (physical address of file on device)
Size (# bytes or #blocks)

Betriebssysteme WS 09/10

5 File Systems

8 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Protection (who can access and how)

Typical File Attributesyp

Betriebssysteme WS 09/10

5 File Systems

9 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

File Structures

None - sequence of words, bytes

Simple record structure
Lines

Fixed length

Variable lengthVariable length

Complex Structures
F tt d d tFormatted document

Relocatable executable object

Betriebssysteme WS 09/10

5 File Systems

10 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

File Structure (OS’s Point of View)()

Three kinds of files:
(a) byte sequence (provides maximal flexibility)
(b) record sequence (often with fixed sized records)
(c) Tree (sometimes ith ariable si ed records)

Betriebssysteme WS 09/10

5 File Systems

11 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

(c) Tree (sometimes with variable sized records)

File Typesyp

Regular files
executable, dll, object, source, text, …e ecu ab e, d , objec , sou ce, e ,

Special files
Di t d i (h t bl k) li kDirectory, device (character, block), links

A file’s type can be encoded (see man 1 file) yp ()
in

its FS internal data structure (e.g., Unix)
I dInode

its name (e.g., file extensions in Windows)
com exe bat dll jpg.com, .exe, .bat, .dll, .jpg …

its content (e.g., Unix)
magic number or an initial character
(#! f h ll i t)

Betriebssysteme WS 09/10

5 File Systems

12 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

(e.g. #! for shell scripts)

Regular File Typesg yp

Betriebssysteme WS 09/10

5 File Systems

13 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

13

Regular File Types (2)g yp ()

?

code

Betriebssysteme WS 09/10

5 File Systems

14 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

(a) Executable file (e.g. ELF) (b) Archive file (e.g., tar)

Abstract File Operationsp

A file is an abstract data type/object offering
create()

write()

read()

reposition() (within file)p ()

delete()

truncate()()

open(Fi) – search the directory structure on disk
for entry Fi, and move its meta data to memoryy i y
close (Fi)-move cached meta data of entry Fi in
memory to directory structure on disk

Betriebssysteme WS 09/10

5 File Systems

15 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Interaction with a FS

Application

fil ltfilename fid fid result FS Interface

(often syscall API)
File Directory
Service

File Storage Hides specifics of storage media +
Resolves filename +
enhances usage of g

Service preserves files even in case of
HW failures or SW crashes

files +
controls access +
sharing

Betriebssysteme WS 09/10

5 File Systems

16 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Goals of File Managementg

Provide a convenient naming scheme for files

Provide uniform I/O support for a variety of storage device
types

P id t d di d t f I/O i t f f tiProvide standardized set of I/O interface functions

Minimize/eliminate loss or corruption of data

Provide I/O support and access control for multiple users

Enhance system administration (e g backup)Enhance system administration (e.g. backup)

Provide acceptable performance

Betriebssysteme WS 09/10

5 File Systems

17 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

File Names

FS with a convenient naming scheme, e.g.
Textual namesTextual names

Restricted alphabet, i.e.
Only certain characters (e g no ‘?’ or ‘/’)Only certain characters (e.g. no ? or /)

Limited length

only certain formats, e.g. y , g

DOS 8 character string.xyz character suffix

XP 255 character.xyz character suffixy

Case (in)sensitive

Names must fulfill certain convention, extensionNames must fulfill certain convention, extension
xyz.c or xyz.C if C(++)-Compiler should run

Betriebssysteme WS 09/10

5 File Systems

18 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Open Filesp

Several meta data are needed to manage open
filfiles:

file pointer: pointer to last read/write location, per
process that has the file openprocess that has the file open

access rights: per-process/task access mode
information, who is allowed to do what

file-open count: counter of number of times a file is openfile open count: counter of number of times a file is open
– to allow removal of data from open-file table when last
processes closes it

disk location: cache of data access information

Betriebssysteme WS 09/10

5 File Systems

19 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

File Access

Strictly sequential access (early systems)
read all bytes/records from the beginning

cannot jump around, could only rewind

sufficient as long as storage was a tape

Random access (current systems)Random access (current systems)
bytes/records read in any order

essential for database systems

Betriebssysteme WS 09/10

5 File Systems

20 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

File Organization and Accessg

Possible access patterns:

Read the whole file

Read individual blocks of a fileRead individual blocks of a file

Read blocks preceding/following the current one

Retrieve a subset of records

Write/update a complete file sequentiallyp p q y

Insert/delete/update one record in a file

U d t bl k i filUpdate blocks in a file

Betriebssysteme WS 09/10

5 File Systems

21 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Access Methods

Sequential Access: read next
write nextwrite next
rewind
no read after last write
append

Di t A d• Direct Access: read n
write n
position to nposition to n

read next
write next

rewrite n
n = relative position number

Betriebssysteme WS 09/10

5 File Systems

22 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

A Sequential Access to a Fileq

Betriebssysteme WS 09/10

5 File Systems

23 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

File Access Methods

Pl i (t t d) fil (i fil)Plain (unstructured) file (generic file)
Entity: byte (sometimes: block)
If an application wants to structure a persistent dataIf an application wants to structure a persistent data
container it has to implement its internal structure

Structured fileStructured file
Entity: record (or user type objects…)

Remark: Since Unix, many OSes only offer plain files,
applications and libraries can implementapplications and libraries can implement
specific structured file types on top of this.

Betriebssysteme WS 09/10

5 File Systems

24 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Operations on Unstructured Files

CreateFile(pathname)CreateFile(pathname)

DestroyFile(pathname)

OpenFile(pathname, read/write)Ope e(pat a e, ead/ te)

ReadFile(FID, byte-range, memory location)

WriteFile(FID, byte-range, memory location)

CloseFile(FID)

PositionPointer(FID, positon for pointer)

Remark: “memory location” is the data area within AS of
the calling process (e.g. within heap or stack). g p (g p)

Betriebssysteme WS 09/10

5 File Systems

25 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Plain File

Definition: A plain file is a sequence of bytes (gaps are
possible). Typically located on a disk.p) yp y

0 1 2 3 4 5 6 7 8 9 10 ...

. . .

file pointer to the current location within a file

Characteristic: You can randomly access any byte within an unstructured file
if you have positioned its file pointer appropriately.

P bl Di k t b t l bl kProblem: Disks cannot access bytes; only blocks.

Solution: Buffer file blocks (classical method) or
entire files (memory mapped files) within main memory

Betriebssysteme WS 09/10

5 File Systems

26 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Structured File

0 1 2 3 4 5 6 7 8 9 …. 511 0 1 2 3 4 5 6 7 8 9 …. 511 0 1 2 3 4 5 6 7 8 9 …. 5110 1 2 3 4 5 6 7 8 9 …. 511

. . .

0 1 2 3 4 5 6 7 8 9 …. 511

. . .

0 1 2 3 4 5 6 7 8 9 …. 511

.0 1 2 128 129 . . .

file pointer to a valid location
0 1 b

Records = logical entities tightly coupled to a specific application, e.g.
record of an employee

Employee-file might contain all relevant information, e.g.
 employee number, family name,…,
 employee position, department number, p y p , p ,
 passport number, birth date, salary, etc.

Records of equal size or not (then additional length field is needed)

Betriebssysteme WS 09/10

5 File Systems

27 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Records with special key field ( some ordering within the file)

Example: File Operation (1)p p ()

Usage of the following program: $ copyfile abc xyz

Betriebssysteme WS 09/10

5 File Systems

28 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Example: File Operation (2)p p ()

Betriebssysteme WS 09/10

5 File Systems

29 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Goal of Directories

Naming: convenient to users
Two users can have same name for different files

The same file can have several different names

Grouping: logical grouping of files by properties
all Java programsall Java programs

all games

all programs of a projectall programs of a project

…

Efficiency: fast operationsEfficiency: fast operations

Betriebssysteme WS 09/10

5 File Systems

30 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Operations Performed on Directoryp y

Create a file

Delete a file

R filRename a file

Traverse the file systemTraverse the file system

List a directory

Search for a file

Betriebssysteme WS 09/10

5 File Systems

31 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Directory (Folder)y ()

Directory is a node in a FS owned by an (authorized) y y ()
subject (e.g. root) containing information about
(some or all) files of the FS

Directory

F 1 F 2
F 3

F 4

F n
Files

Both directories and files reside on disk or

F n

Betriebssysteme WS 09/10

5 File Systems

32 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Both directories and files reside on disk or …
Backups of these both objects are kept on tapes etc.

Directory (Folder)y ()

The collection of directories and files establish a
(hierarchical) FS structure(hierarchical) FS structure

In LINUX there are some special directories e.g.
troot

home
workingworking

Principle structure of a modern FS is a rooted tree

Pathnames help to unambiguously identify files

Provides mapping between file names → files

Process of file retrieval = navigation

Betriebssysteme WS 09/10

5 File Systems

33 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Single-Level Directoryg y

A i l di t f llA single directory for all users

Naming problem

Grouping problem

Betriebssysteme WS 09/10

5 File Systems

34 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Two-Level Directoryy

Separate directory for each userSepa ate d ecto y o eac use

• Path namePath name

• Can have the same file name for different user

• Efficient searching

Betriebssysteme WS 09/10

5 File Systems

35 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

g

• No grouping capability

Tree-Structured Directories

Efficient Searching & Grouping Capability
Current directory (working directory)

Betriebssysteme WS 09/10

5 File Systems

36 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

y (g y)
cd /spell/mail/prog
type list

Role of Working Directoryg y

Ab l t th b t di i ll hAbsolute pathnames can be tedious, especially when
FS-tree is deep

Id f (t) ki di t dIdea of a (current or) working directory cwd
File is referenced via a (hopefully shorter) relative pathname

d b l t (’) t k’ ti i tcwd belongs to a (process’) task’s execution environment

The initial wd is often called home

Example:
cwd = /home/lief/secret/examinations/SA
l / l tilpr ./solution_exam

Betriebssysteme WS 09/10

5 File Systems

37 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Relative ver. Absolute Pathnames

Ab l t thAbsolute pathname
Path from root of FS to file, e.g.

/home/lief/secret/examinations/SA/home/lief/secret/examinations/SA

Relative pathname
Path from current working directory to filePath from current working directory to file

Note:

‘.’ refers to current directory

‘..’ refers to parent directory

Betriebssysteme WS 09/10

5 File Systems

38 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Benefit of Relative Pathname

Improved portability

E l A tExample: A program system

/

toolsX toolsY

data programsp g

dat1.a liba libb progdat1.a liba libb prog

If you move the complete program system you must change all

Betriebssysteme WS 09/10

5 File Systems

39 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

If you move the complete program system you must change all
absolute pathnames whereas relative pathnames can survive

Hierarchical FS (à la Unix)()

passwd

passwd

 Unambiguous file names via pathnames, e.g.

Betriebssysteme WS 09/10

5 File Systems

40 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

/bin/passwd ≠ /etc/passwd

UNIX Directory Operationsy p

Example: Unix directory operations

opendir

closedir

readdir

mkdir

Betriebssysteme WS 09/10

5 File Systems

41 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

rmdir

Unix Link

Direct access to a file without navigation

Unix hard link: ln filename linkname
(another name to the same file = same inode, file (,
is only deleted if last hardlink has been deleted,
i.e. if refcount in inode = 0); invalid links are not
possible

Symbolic link: ln s filename linknameSymbolic link: ln –s filename linkname
(a new file linkname with a link to a file
with name filename, whose file might be

tl t t d t i t)currently not mounted or not even exist.)

Betriebssysteme WS 09/10

5 File Systems

42 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Acyclic-Graph FS Structurey p

Local
copy

Local
copy

Shared subdirectory

Betriebssysteme WS 09/10

5 File Systems

43 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

File Sharingg

In multi-user systems, files can be shared among
lti lmultiple users

Three issuesThree issues

Efficiently access to the same file?

How to determine access rights?

Management of concurrent accesses?Management of concurrent accesses?

Betriebssysteme WS 09/10

5 File Systems

44 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Access Rights (1)g ()

None
User might not know of existence of fileUser might not know of existence of file
User is not allowed to read directory containing the file

Knowledge
User can only determine the

fil i tfile existence
file ownership

Betriebssysteme WS 09/10

5 File Systems

45 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Access Rights (2)g ()

Execution
User can load and execute a program but cannot copy itUser can load and execute a program, but cannot copy it

Reading
User can read the file for any purpose, including copying andUser can read the file for any purpose, including copying and
execution

Appendingpp g
User can only add data to a file, but cannot modify or delete any
data in the file

Betriebssysteme WS 09/10

5 File Systems

46 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Access Rights (3)g ()

Updating
User can modify delete and add to file’s data including creatingUser can modify, delete, and add to file s data, including creating
the file, rewriting it, removing all or some data from the file

Changing protectiong g p
User can change access rights granted to other users

Deletion
User can delete the file

Betriebssysteme WS 09/10

5 File Systems

47 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Access Rights (4)g ()

Owner

Has all rights previously listed

May grant rights to other users using the following y g g g g
classes of users

Specific user

User groups

All (for public files)

Betriebssysteme WS 09/10

5 File Systems

48 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Classical Unix Access Rights (1)g ()

t t l 1704total 1704
drwxr-x--- 3 lief 4096 oct 14 08:13 .
drwxr-x--- 3 lief 4096 oct 14 08:13 ..
-rw-r----- 1 lief 123000 feb 01 22:30 exam

Fi t l tt fil tFirst letter: file type
d for directories
- for regular filesfor regular files
b for block files
… What else?

Three user categories:
user, group, and others

Betriebssysteme WS 09/10

5 File Systems

49 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Classical Unix Access Rights (2)g ()

hardlink count
total 1704

drwxr-x--- 3 lief 4096 oct 14 08:13 .

drwxr-x--- 3 lief 4096 oct 14 08:13drwxr x 3 lief 4096 oct 14 08:13 ..

-rw-r----- 1 lief 123000 feb 01 22:30 exam

Three access rights per category
read, write, and executeread, write, and execute

Execute permission for a directory = permission to access
files in the directory

You must have the read permission to a directory if you
want to list its content

Betriebssysteme WS 09/10

5 File Systems

50 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Classical Unix Access Rights (3)g ()

Shortcomings

Three user(subject) categories is not enoughThree user(subject) categories is not enough

In Windows you have finer granularity concerning
access rights per folder and per file e g you canaccess rights per folder and per file, e.g. you can
explicitly deny/allow access for a specific user

U i h i t d d th t f ACLUnix has introduced the concept of ACLs

An ACL is a list -bound to a file f, containingAn ACL is a list bound to a file f, containing
all individual subjects & their individual
permissions how to access this file f

Betriebssysteme WS 09/10

5 File Systems

51 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

permissions how to access this file f

Unix ACLs

If I want to view the content of the ACL of the file
exam in my current directory, I can use the following
command:

bellosa@i30s5:~> getfacl exambellosa@i30s5:~> getfacl exam
file: exam
owner: bellosa
group: i30staff
user::rwx
group::r--
other::---

Betriebssysteme WS 09/10

5 File Systems

52 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Unix ACLs

If I wish to allow another person with an account on the same
system to access file exam, I use the setfacl command, e.g.

setfacl -m user:name:permissions file
name is loginID of the person to which you want to assign access, g p y g ,
permissions can be one or more of the following: r,w,x
file is the name of the file.

Example:
I want to enable Philipp with an assumed loginID pkupfer to
read & modify but not to execute my file exam: I would use:read & modify, but not to execute my file exam: I would use:

setfacl -u user:pkupfer:rw exam

Betriebssysteme WS 09/10

5 File Systems

53 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Note: you always have to use the complete permission triple
53

Unix ACL

Now when I type again getacl exam, the following
information is displayed:information is displayed:

bellosa@i30s5:~> getfacl exam
file: exam
owner: bellosa
group: i30staff
user::rwx
user:pkupfer:rw-
group::r--
mask::rw-

hother::---

Betriebssysteme WS 09/10

5 File Systems

54 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Windows XP Access-control List Management

Betriebssysteme WS 09/10

5 File Systems

55 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Concurrent Access to Files
Some OSes provide mechanisms for users to manage
concurrent access to files

Examples: flock() , fcntl() system calls

Applications can lock
entire file for updating file
individual records for updating

Exclusive or shared:Exclusive or shared:
Exclusive – Writer lock

Shared – Multiple readers allowedShared Multiple readers allowed

Mandatory or advisory:
Mandatory – access is denied depending on locks held and y p g
requested

Advisory – processes can find status of locks and decide what
to do

Betriebssysteme WS 09/10

5 File Systems

56 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

to do

