2

Chapter 5.11: Implementing File Systems

m File-Systems Structure
m File Implementation
= Contiguous Allocation
» Linked Allocation
= Indexed Allocation

a Directory Implementation

m Log-Structured Files Systems

11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

A Typical File-System Organization

11.01.2010

i directory)
artition A < _
P files
4 > disk 1
(| directo "
b partition C <
", !
partition B filag
. J

directory

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

files

AN

> disk 2

> disk 3

Betriebssysteme WS 09/10

5 Storage Management

Disk Structure

m Disk can be subdivided into partitions
m Disks, partitions! can be RAID protected against failure

m Disk or partition can be used raw — without a file system,
or formatted with a file system (FS)

m Entity containing a FS known as a volume

m Each volume containing a FS also tracks that FS’s info in
device directory or volume table of contents

m As well as general-purpose FSs there are many special-
purpose FSs, frequently all within the same operating
system or computer
!Partitions also known as minidisks, slices

11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10
Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Implementing Files

File with a set of Disk with allocated and free
logical file blocks (records) physical disk blocks
11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Implementing a FS on Disk

< Entire disk -
Partition table Disk partition \
MBR
’V Boot block | Super block | Free space mgmt |-nodes Root dir Files and directories

m Possible FS layout per partition

m Sector 0 of disk = MBR
m Boot info (if PC is booting, BIOS reads in and executes MBR)
w Disk partition info

m Sector O of partition is volumen boot record

11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Layered File System

11.01.2010

application programs

logical file system

U

file-organization module

J

basic file system

v

I/O control

v

devices

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

8

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

11.01.2010

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

In-Memory File System Structures

open (file name)

O[]
|

directory structure

>

directory structure

file-control block

user space kernel memory secondary storage

(a)
index
\ il [|
/ data blocks
read (index) —
per-process system-wide file-control block
open-file table open-file table

user space kernel memory secondary storage

(b)
11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group

Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

Virtual File Systems

m Virtual File Systems (VFS) provide an object-oriented way
of implementing file systems.

m VFS allows the same system call interface (the API) to be
used for different types of file systems.

m The APl is to the VFS interface, rather than any specific
type of file system.

10 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10
Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

11

Schematic View of Virtual File System

11.01.2010

file-system interface

Y

VFS interface

L 2

local file system
type 1

A

y

© 2009 Karlsruhe Institute of Technology, System Architecture Group

local file system

type 2

Y

Frank Bellosa, Gerd Lieflander, Silberschatz et al.

remote file system
type 1

4

network

Betriebssysteme WS 09/10

5 Storage Management

Implementing Files

m FS must keep track of
= Which logical block belongs to which file?
» In what order are the blocks form the file?
» Which blocks are free for the next allocation?

m Given a logical region of a file, the FS must identify the
corresponding block(s) on disk

m Needed meta data stored in
m File allocation table (FAT)
u Directory
= Inode

m Creating (and updating) files might imply allocating
new blocks (and modifying old blocks) on the disk

12 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Allocation Policies

= Need to know maximum size of a file at creation time
(in some cases no problem, e.q. file copy etc.)

» Difficult to reliably estimate maximum size of a file

a Users tend to overestimate file size, just to avoid running
out of space

= Allocate in pieces as needed

13 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10
Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Fragment Size

a Extremes:
s Fragment size = length of file
m Fragment size = smallest disk block size (sector size)

m Tradeoffs:
» Contiguity = speedup for sequential accesses

= Many small fragments = larger tables needed to
manage free storage management as well as to support
access to files

m Larger fragments help to improve data transfer

a Fixed-size fragments simplify reallocation of space

» Variable-size fragments minimize internal fragmentation,
but can lead to external fragmentation

*see page size discussion

14 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Implementing Files

a 3 ways of allocating space for files:

= contiguous
= chained
= Indexed
= fixed block fragments
= variable block fragments

15 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

16

Contiguous Allocation

m Array of N contiguous logical blocks reserved per file
(to be created)

a Minimum meta data per entry in FAT/directory
m Starting block address
a N

m What is a good default value for N?

s What to do with an application that needs more than N
blocks?

m Discussion similar to ideal page size
u Internal fragmentation
u External fragmentation

11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Scattered Disk

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
— r -) r -) —

LII11] ERRNEN
S O S L J
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)
(File A) (File C) (File E) (File G)
5 r) r e 3 P——y
- — N | L i J
File B 5 Free blocks 6 Free blocks
(b)

(a) Contiguous allocation of disk space for 7 files

(b) State of the disk after files D and F have been removed

17 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group

Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

Contiguous File Allocation

=l . I
o[1.1 - .
5 6 4 8 9 -
ol 1 I I
15 16 17 18- 19-
ol - I - < .
25- 26 27W 28- 29

30\1’5':- 32- 33 34//

© 2009 Karlsruhe Institute of Technology, System Architecture Group

Frank Bellosa, Gerd Lieflander, Silberschatz et al.

File Allocation Table

File Name Start Block [ength
FileA 2 3
FileB 9 5
FileC 18 8
FileD 27 2
FileE 30 3

Remark: To overcome
external fragmentation

= periodic compaction

Betriebssysteme WS 09/10

5 Storage Management

19

20- 21

FileD

o I I T
BN A
8 O o PR e P
15- 16- 17- 18- 19-

FileC

FileE

File Allocation Table

File Name Start Block Length

FileA
FileB
FileC
FileD
FileE

0 3
3 5
8

16 2
18 3

22 23 24

25 26 27 28 29

30 31 32 33 34
\ /

11.01.2010

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

Chained Allocation (Linked List)

m Per file a linked list of logical file blocks, i.e.

a Each file block contains a pointer to next file block, i.e. the
amount of data space per block is no longer a power of two,
= Conseqguences?

u Last block contains a NIL-pointer (e.g. -1)
m FAT or directory contains address of first file block

m No external fragmentation
= Any free block can be added to the chain

m Only suitable for sequential files

m No accommodation of the principle of disk locality
m File blocks will end up scattered across the disk
= Run a defragmentation utility to improve situation

20 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Chained Allocation (2)

Storing a file as a linked list of disk blocks

File A
N - i i .)
File File File File File
block block block block block
0] 1 2 3 4
Physical 4 £ 2 10 12
block
File B
—_— —r ———
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block
21 11.01.2010

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

Chained Allocation (3)

< I
FileC
0 1 2 3 4
L,

5 6 7 8 9
10111 120 113 1140+
15116 J17_ 118 119

20| 21 22 |23 |24

o5 o627 |2giiil 29
30|31 32 133 |34
\ //

22 11.01.2010

File Allocation Table
File Name Start Block Length

FileC 1 5

Remark:
If you only access sequentially
this implementation is quite suited.

However requesting an individual record
requires tracing through the chained block,
l.e. far too many disk accesses in general.

© 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al.

5 Storage Management

Linked List Allocation within RAM

m Each file block only used for
storing file data

Physical
m Linked list allocation b'°°‘;
with FAT in RAM 1
a Avoids disk accesses when 2 10
: 3 11
SearChlng fOr a bIOCk 4 7 —«—— File A starts here
a Entire block is available for 5
data 6 3 <« File B starts here
7 2
m Table gets far too large for 8
modern disks, = 9
) 10 12
au Can cache only, but still 54 —
consumes significant RAM 12 =
m Used in MS-DOS, 0OS/2 13
"
15 |—<— Unused block

Similar to an inverted page table, one enuy per aiSk DIOCK

23 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10
Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

File-Allocation Table

directory entry

test

217

name

24 11.01.2010

© 2009 Karlsruhe Institute of Technology, System Architecture Group

start block

—» 217

339

618

no. of disk blocks -1

Frank Bellosa, Gerd Lieflander, Silberschatz et al.

618

339

FAT

Betriebssysteme WS 09/10

5 Storage Management

Indexed Allocation (1)

a Indexed allocation

m FAT (or special inode table) contains a one-level index
table per file

a Generalization n-level-index table
= Index has one entry for allocated file block

a FAT contains block number for the index

25 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Indexed Allocation (2)

<

I

File Allocation Table

File Name

Index Block

FileC

24

FileC
0 1 2 3 4
(. 1
5 6 7 8 9
T
10 11 12 13 14
15 16 17 18 19
1 | Il//
20 21 22 23 24 .
ﬁ‘ \
25 26 27 28 29
30 31 32 33 34
\ /___/
26 11.01.2010

NP~ WO
o A~

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

27

Indexed Allocation (3)

File Allocation Table

11.01.2010

Eile Name Index Blogk
FileC 24
l--"" | StartBlock Length
1 3
- 28 4
RSN 14 1

5 6 7 8 9
10 J11l o 113 11

15 J16 lh7 118 19

o0 loal 22 23 o4 |

I N

o5 loel |27 |28l 2o
s00 31 3]33 |34
\ /

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Variable sized file portion (extent)
In # blocks

Betriebssysteme WS 09/10

5 Storage Management

Analysis of Indexed Allocation

m Supports sequential and random access to a file

m Fragments

= Block sized
= Eliminates external fragmentation

a Variable sized
= Improves contiguity
m Reduces index size

28 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

29

Indexed Allocation (5)

11.01.2010

File Attributes

Address of disk block O

Y

Y

Address of disk block 1

Address of disk block 2 >

Y

Address of disk block 3

Address of disk block 4

Y

Address of disk block 5

Y

Address of disk block 6

Y

Address of disk block 7 — %

Address of block of pointers »

Disk block
containing
additional

disk addresses

An example i-node

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

30

Example: UNIX (4K bytes per block)

mode

owners (2)

timestamps (3) e
—>| data

size block count

—» data

—»| data

direct blocks . o

—» data

—>» data

single indirect ——

—>| data
double indirect >

data

data

triple indirect

11.01.2010

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

data

data

Betriebssysteme WS 09/10

5 Storage Management

Summary: File Allocation Methods

characteristic contiguous | chained indexed
preallocation? |necessary |possible possible

fixed or variable | variable fixed fixed variable
size fragment?

fragment size large small small medium
allocation once low to high low
frequency high

time to allocate | medium long short medium
file allocation one entry |one entry | large medium
table size

31 11.01.2010

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

Implementing Directories

LAY AR LI L g it uituUlibud

| | /
games | attributes games | 1
mail | attributes mail l 4+
I . |
news i attributes news i T
work | attributes work : \\
(a) (b) Data structure
containing the
attributes

m (a) A simple directory (MS-DOS)
m fixed size entries
m disk addresses and attributes in directory entry

m (b) Directory in which each entry just refers to an i-node (Unix)

32 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Implementing Directories

m How to implement a Unix-like directory?

- -~

/¢ [

filename = What to do when some entries are deleted?

= Never reuse
= Bridge over the directory holes

inode :
= Compaction, but when?
- eager or
« lazy
33 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Directory Entries & Long Filenames

File 1 entry length - Pointer to file 1's name Entry
for one
File 1 attributes File 1 attributes file
Entry -
for one P { i !
file 8 v t >
b u d g
L& 1 & B
P r o i]
e c t -
b u d g
e i
L Heap

(@) (b)
m Two ways of handling long file names in directory
a (a) In-line
» (b)Inaheap

34 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10
Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Analysis: Linear Directory Lookup

m Linear search = for big directories not efficient

m Space efficient as long as we do compaction
= Either eagerly after entry deletion or
» Lazily (but when?)

m With variable file names = deal with fragmentation

m Alternatives
= (e.g., extensible) hashing
= (e.g., B-) Tree structures

35 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Hashing a Directory Lookup

a Method:
m Hashing a file name to an inode

m Space for filename and meta data is variable sized

m Create/delete will trigger space allocation and clearing
m Advantages:

au Fast lookup and relatively simple

m Disadvantages:
= Might be not as efficient as trees for very large directories

36 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Tree Structure for a Directory

a Method
m Sort files by name
m Store directory entries in a B-tree like structure
m Create/delete/search in that B-tree

m Advantages:
a Efficient for a large number of files per directory

m Disadvantages:
» Complex
= Not that efficient for a small number of files
= More space

37 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

UNIX File System Structure

Application

FS Cache “writes-behind”
in case of RAM pressure or
periodically or due to
system calls or commands

/

/

7
i
{

File Subsystem /

Speedup due
to FS cache

=

File and FS

consistency problems

Y

r / Buffer - Cache ||

Character Block

Device Drivers (e.g. disk driver)

ﬂ

38 11.01.2010

© 2009 Karlsruhe Institute of Technology, System Architecture Group

Frank Bellosa, Gerd Lieflander, Silberschatz et al.

file block f,

Betriebssysteme WS 09/10

5 Storage Management

Using a Unix File

Opening a file creates a file descriptor fid

Used as an index into a process-specific table of open files
The corresponding table entry points to a system-wide file table
Via buffered inode table, you finally get the data blocks

e i

fid =open(...) : -
[— -

read(fid,...)
- open files file table inode table ©
: per process (system wide) (in a buffer)
user address space kernel address space
39 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Original Unix File System

m Simple disk layout
» Block size = sector size (512 bytes)
m Inodes on outermost cylinders!
m Data blocks on the inner cylinder
m Freelist as a linked list

m Issues
» Index s large
m Fixed number of files
= Inodes far away from data blocks
|

Inodes for directory not close
together

a Consecutive file blocks can be
anywhere

= Poor bandwidth for sequential access

40 11.01.2010 In ve ry g %5J¥arllerqu)lslstEJ§§f 49@:&2909}/, g%t@rL rckmec'ttua%rom IdSt Of the Cyl I nqgfregssys'feme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Unix File Names

m Historically (Version 7) only 14 characters
Bytes 2 14

File name

|-node
number

m System V up to 255 ASCII characters

<filename> . <extension>

41 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

BSD FFS

m Use a larger block size: 4 KB or 8 KB

» Allow large blocks to be chopped into 2,4 or 8
fragments

= Used for little files and pieces at the ends of files

m Use Instead of a free list
= Try to allocate more contiguously

= 10% reserved disk space

42 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

BSD FFS Directory

a Directory entry needs three elements:

m Each directory contains at least two entries:
» .. =link to the parent directory (forming the directory tree)

m . =link to itself

m FFS offers a “tree-like structure” (like Multics), supporting
human preference, ordering hierarchically

43 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10
Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Unix BSD FFS Directory (2)

|-node number

Entry size
Type
/ /- File name length
@| 19 F:8: colossal 19 F 10 voluminous

(b) 19 F s colossal %/nus% BSE\EDEBE bigdir /nus%

m BSD directory three entries (voluminous = hardlink to colossal)

m Same directory after file has been removed

44 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Unix Directories

m Multiple directory entries may point to same inode (hard link)

m Pathnames are used to identify files
an absolute pathname
a relative pathname

a Pathnames are resolved from left to right

m Aslong as it's not the last component of the pathname,
the component name must be a directory

m With symbolic links you can address files and directories with
different names. You can even define a symbolic link to a file
currently not mounted (or even that never existed); i.e. a
symbolic link is a file containing a pathname

45 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

46

Logical and Physical File System

root file system

bin etc usr
cc sh getty passwd

11.01.2010

/ bi< incllude Sirc
awk yacc stdio.h uts

mountable file system

© 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al.

5 Storage Management

Mounting a File System

Hard disk Diskette Hard disk
/ / /

A
/\ /\ oo

&b & &b

(a) Before mounting (b) After mounting

47 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Logical and Physical File System

m A logical file system can consist of different physical file
systems

m Afile system can be mounted at any place within another file
system

m When accessing the “local root” of a mounted file system, a
bit in its inode identifies this directory as a so-called mount

NnNnint
PUII [9

m Using mount respectively umount the OS manages a so
called mount table supporting the resolution of path names
crossing file systems

m The only file system that has to be resident is the root file
system (in general on a partition of a hard disk)

48 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Layout of a Logical Disk

m Each physical file system is placed within a logical disk partition.
A physical disk may contain several logical partitions (or logical
disks)

m Each partition contains space for the boot block, a super block,
the inode table, and the data blocks
Only the root partition contains a real boot block
Border between inodes and data blocks region can be set, thus
supporting better usage of the file system

= Wwith either few large files or
m with many small files

b

S

file data blocks

49 11.01.2010

© 2009 Karlsruhe Institute of T@I@(ﬂ@ﬁﬁystem Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al.

5 Storage Management

Hard Links <> Symbolic Links

IS another , I.e. 3 another directory entry
pointing to a specific file; its inode-field is the same in all hard
links. Hard links are bound to the logical device (partition).

Each new hard link increases the in file’s i-node.
As long as link counter = 0, file remains existing after a
In all cases, a remove decreases link counter.

IS a containing a pathname pointing to
a file or to a directory. Symbolic links are evaluated per access.
If file or directory is removed the symbolic link points to
nirwana.

You may even specify a symbolic link to a file or to a directory
currently not present or even currently not existent.

50 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

51

Unix Inode

Field | Bytes | Description

Mode 2 File type, protection bits, setuid, setgid bits

Nlinks 2 Number of directory entries pointing to this i-node

Uid 2 UID of the file owner

Gid 2 | GID of the file owner

Size 4 | File size in bytes

Addr 39 | Address of first 10 disk blocks, then 3 indirect blocks

Gen 1 Generation number (incremented every time i-node is reused)
Atime 4 | Time the file was last accessed

Mtime 4 Time the file was last modified

Ctime 4 | Time the i-node was last changed (except the other times)

11.01.2010

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Betriebssysteme WS 09/10

5 Storage Management

Access Structure

A 4

100 1 0l

I

B=

Remark: —
Depending on the block size (e.g. 512 Bytes, ...)
and on the pointer length (e.g. 4 Bytes)
maximum file size is greater than 2 MB. _
“Small” files are favored concerning access speed. | .
| P [—
52 1 ' Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silbers?:hétz' et al. 5 Storage Management

Buffering

m Disk blocks are buffered in main memory. Access to buffers
IS done via a hash table.

m Blocks with the same hash value are chained together
Buffer replacement policy = LRU
Free buffer management is done via a double-linked list.

head of free list

hash table l 1

53 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

5 Storage Management

UNIX Block Header

block status flags/

pointer to cached block

device number

block number on device

/O error status

bytes left to transfer

pair of pointers in case
of hash collisions

pair of pointers
for the free list

Dirty block,
Locked block etc.

Used for
hashing

Used by
disk I/O driver

>_ Between other
block headers

54 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Data block in memory

UNIX Buffer Cache (1)

Device List “Block Headers”
hash table)

Device#,Block#

Free List Header

Remark:
, and Z are block headers of blocks mapped into the same hash table entry
55 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

UNIX Buffer Cache (2)

Device List

Top of the LRU-stack =
most recently accessed block

(hash table)

Device#,Block#

A

\ 4

Fhe othdr
green” pointers

£

e¢stablishing the free |j

are omitted
\)\

L1

N

“Free List Header”

\ 4

a

\ 4

<

Remark: The free list contains all block headers, establishing a LRU order

56 11.01.2010

forward

© 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Lieflander, Silberschatz et al.

Least recently
accessed block
Betriebssysteme WS 09/10

5 Storage Management

UNIX Buffer Cache (3)

Advantages:

m reduces disk traffic

a “well-tuned” buffer has hit rates up to 90%
(according to Ousterhout 10.th SOSP 1985)

= ~ 10% of main memory for the buffer cache
(recommendation for old configurations)

57 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

UNIX Buffer Cache (4)

Disadvantages:

m Write-behind policy might lead to
» data losses in case of system crash and/or

m inconsistent state of the FS

= rebooting system might take some time due to fsck,
l.e. checking all directories and files of FS

a Always two copies involved
» from disk to buffer cache (in kernel space)
» from buffer to user address space

m S Cache wiping if sequentially reading a very large
file from end to end and not accessing it again

58 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

The Linux Ext2fs File System

m Ext2fs uses a mechanism similar to that of BSD Fast
File System (ffs) for locating data blocks belonging to
a specific file

m The main differences between ext2fs and ffs concern
their disk allocation policies

» In ffs, the disk is allocated to files in blocks of 8Kb, with
blocks being subdivided into fragments of 1Kb to store small
files or partially filled blocks at the end of a file

m Ext2fs does not use fragments; it performs its allocations in
smaller units
= The default block size on ext2fs is 1Kb,
although 2Kb and 4Kb blocks are also
supported

m Ext2fs uses allocation policies designed to place logically
adjacent blocks of a file into physically adjacent blocks on
disk, so that it can submit an I/O request for several disk

59 11.01.2010 block$ %Kﬁsr%i}r! l 0 Io gj‘, Architecture Group Betriebssysteme WS 09/10
ra ellosa, Ger g fgnd T,ISi ers% zqq 5 Storage Management

Ext2fs Block-Allocation Policies

allocating scattered free blocks

S LAV i

allocating continuous free blocks

< X /|

. block selected :
block in use o bit boundary
by allocator
free block — bitmap search byte boundary
60 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Journaling File Systems

m Journaling file systems record each update to the
file system as a transaction

a All transactions are written to a log

m A transaction is considered committed once it is written
to the log

= However, the file system may not yet be updated

m The transactions in the log are asynchronously
written to the file system
= When the file system is modified, the transaction is
removed from the log
a If the file system crashes, all remaining transactions
In the log must still be performed

61 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10
Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

Log-Structured File Systems

m Log-structured FS: use disk as a circular buffer:

m Write all updates, including inodes, meta data
and data to end of log
= have all writes initially buffered in memory
» periodically write these within 1 segment (1 MB)
= when file opened, locate i-node, then find blocks

m From the other end, clear all data, no longer used

62 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group Betriebssysteme WS 09/10

Frank Bellosa, Gerd Lieflander, Silberschatz et al. 5 Storage Management

