KIT

Karlsruhe Institute of Technology

Betriebssysteme

5. Threads
Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) — OPERATING SYSTEMS GROUP

KIT - Universitét des Landes Baden-Wirttemberg und
nationales F in der Helmholl i

http://www.kit.edu

Where we ended last lecture

a Processes
m Program : Recipe is like Process : Cooking
Processes are a resource container for the OS
For the process it feels like it is alone: it has its own CPU and memory
The OS implements multiprogramming by rapidly switching processes

m In POSIX processes duplicate themselves using fork

a This creates a process hierarchy
a Parent processes collect the exit status of their children by waiting for them

a Processes may block, waiting for an event to happen

a This happens e.g., when waiting for a system call to return (e.g., I/O, wait)
m Blocked processes are not run by the OS until the event happens

m New programs are loaded by overwriting a duplicate with a new
executable file using exec
a Parameters and an environment can be passed to initialize the program

Threads

F. Bellosa — Betriebssysteme WT 2016/2017 2/27

Where we ended last lecture

m The ABI standardizes the binary interface of programs and the OS

a “Where to put stuff”

m Process sections
a Alignment

a “How to talk to others” (calling conventions)

a Within the process (functions)
a Between processes (inter-process communication)
m Between processes and the OS (system call)

— Interoperability between processes, libraries, and OS

Threads

F. Bellosa — Betriebssysteme WT 2016/2017

3/27

Where we ended last lecture

m The stack stores
m Local variables
m Execution state of a thread

a cdecl calling convention
m Save old stack frame

Threads

F. Bellosa — Betriebssysteme

A
old BP '
BP
SP e

WT 2016/2017 4a/27

Where we ended last lecture

m The stack stores
m Local variables
m Execution state of a thread

a cdecl calling convention
m Save old stack frame
a Initialize new stack frame

Threads

F. Bellosa — Betriebssysteme

BP

T

SP

WT 2016/2017

4b/27

Where we ended last lecture

m The stack stores
m Local variables
m Execution state of a thread

a cdecl calling convention
m Save old stack frame
a [nitialize new stack frame
a Make room for local variables

Threads

F. Bellosa — Betriebssysteme

old BP
Local Vars
BP e
SP e
WT 2016/2017

4c/27

Where we ended last lecture

m The stack stores
m Local variables

a Execution state of a thread old BP
Local Vars
a cdecl calling convention BP e Arguments
= Save old stack frame sp e

a Initialize new stack frame
a Make room for local variables
a Push arguments on stack in reverse order

Threads

F. Bellosa — Betriebssysteme WT 2016/2017 4d/27

Where we ended last lecture

m The stack stores
m Local variables

a Execution state of a thread old BP
Local Vars
a cdecl calling convention BP e Arguments
a Save old stack frame SP e+— | RetumlIP

a Initialize new stack frame

a Make room for local variables

a Push arguments on stack in reverse order
a Push return address and jump to function

Threads

F. Bellosa — Betriebssysteme WT 2016/2017 4e/27

Where we ended last lecture

m The stack stores
m Local variables
m Execution state of a thread old BP

Stack Frame

Local Vars
a cdecl calling convention BP & Arguments
m Save old stack frame SP e Return IP
Initialize new stack frame old BP 2
Make room for local variables
Local Vars 2

Arguments 2
Push return address and jump to function g

Repeat with next function to call

Return IP 2

]
a
a Push arguments on stack in reverse order
]
a

\ 4

Threads

F. Bellosa — Betriebssysteme WT 2016/2017 4/27

Threads

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 5/27

Processes vs. Threads

m In traditional OSes, each process has

m it's own address space
a it's own set of allocated resources
a one thread of execution (one execution state)

m Modern OSes handle processes and threads of execution more flexibly

m Processes provide the abstraction of an address space and resources
a Threads provide the abstraction for execution states of that AS/container

a Take this with a grain of salt

a Sometimes different threads even have differing address spaces
a In Linux threads are regular processes with shared resources and address
space regions

m Bottom line:
— Some data is thread local, some is thread global (but process local)

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 6/27

Why have multiple threads at all?

a Many programs do multiple

“things” at once

a Multi-threaded web server

a Accept new connections

a Read request from client

a Fetch required data

a Process and deliver data

a Some of these activities
may block

Web server process

|
!

Dispatcher thread

Worker thread User
space

Web page cache
Kernel
Kernel space

Network
connection

— Writing a program as many sequential threads may be easier than
dancing around blocking operations

Threads
Motivation Pthreads

F. Bellosa — Betriebssysteme

Data Structures
WT 2016/2017

Thread Models
7/27

But wasn’t that the reasoning behind processes?

m Whether to use multiple processes or threads depends on the activity!
m Processes rarely share data, and if they do, they do it explicitly.
m Closely related activities share data which favors threads.

Process 1 Process 2 Process 3 Process
| i
User
space
Thread Thread
Kernel K |
space Kernel erne
(a) (b)
Threads
Motivation Pthreads Data Structures Thread Models
WT 2016/2017 8/27

F. Bellosa — Betriebssysteme

Why have multiple threads per process?

m Different example with more shared state and blocking operations
m Word processor: Read input, format output, write backup file

=
Kernel

Keyboard Disk

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 9/27

Thread Libraries

m Thread libraries provide an API for creating and managing threads

a Pthreads
a POSIX API for thread creation and synchronization (IEEE 1003.1c)
m API specifies behavior of the thread library (> 60 API calls)
a Internal details are up to the specific implementation of the library
a Common in UNIX operating systems (Solaris, Linux, Mac OS X)
— You will learn how to use pthreads in the tutorials

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 10/27

Basic POSIX Thread API

a Each pthread is associated with
a an identifier (Thread ID, TID)
a a set of registers (including IP and SP)
m a stack area to hold the execution state (functions/local vars) of that thread
® Pthread create Create a new thread
m Pass: pointer to pthread_t (will hold TID after successful call)
m Pass: attributes, start function, and arguments
® Returns: 0 on success or error value
® Pthread exit Terminate the calling thread
m Pass: exit code (casted to a void pointer)
m Free’s resources (e.g., stack)
m pthread join Wait for a specific thread to exit
m Pass: pthread. t to wait for (or -1 for any thread)
a Pass: Pointer to pointer for exit code
a Returns: 0 on success, otherwise error value

®m pPthread yield Release the CPU to let another thread run

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 11/27

Pthread Example

void* greet (void =id)

{

printf("Hello, I am %1d\n", (intptr_t) id);
pthread_exit ((voidx) 0);

int main ()
{
pthread_t threads[NUM];
for(int i = 0; 1 < NUM; ++1i)
{
int status = pthread_create(threads + i, NULL,
greet, (void x) (intptr_t) 1);
if(status != 0)
die("Error creating thread");

for(int i = 0; i < NUM; ++1)
pthread_join(threads[i], NULL);

return 0;

}

Threads
Motivation Pthreads Data Structures Thread Models
F. Bellosa — Betriebssysteme WT 2016/2017 12/27

No free lunch

a Multithreaded programming is challenging

m Regardless: Whether multiple processes or multi-threading are used
a Processes only share resources (e.g., memory addresses) explicitly
a With threads there is more shared state, so more can possibly go wrong

a The programmer needs to take care of

a Dividing, ordering, and balancing activities
a Dividing data
a Synchronizing access to shared data

— We will discuss synchronization in-depth in the following lectures

a Now: How threads are implemented

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 18/27

Process vs. Thread

m Processes group resources
m Threads encapsulate execution

— Each of those abstractions requires different data

I code ” data H files l

‘ code H data || files |

‘ stack ‘

T
‘ registers | [registers ||| registers |

‘ stack ” stack || stack |

thread —> ; <+— thread
single-threaded process multithreaded process
Threads
Motivation Pthreads Data Structures Thread Models
F. Bellosa — Betriebssysteme WT 2016/2017 14/27

PCB vs. TCB

a We differentiate between

a Process Control Block (PCB): Information needed to implement processes
m Thread Control Block (TCB): Per thread data

a Typical items in each category are:

PCB TCB
Address space | Instruction pointer
Global variables Registers

Open files Stack
Child processes State
Pending alarms

m The PCB is always known to the OS
m Whether or not the OS kernel knows about threads or not depends on
the thread model

Threads
Motivation Pthreads Data Structures Thread Models
F. Bellosa — Betriebssysteme WT 2016/2017 15/27

Thread Model Overview

m The OS kernel always knows of at least one thread per process

a Threads that are known to the OS kernel are called kernel threads
m Threads that are known to the process are called user threads

m Threads can be fully implemented in user-space

a Many-to-One Model: The kernel only knows one of possibly multiple threads
a User threads in this model are called User Level Threads (ULT)

m The kernel can be fully aware of and responsible for managing threads

a One-to-One Model: Each user thread maps to a kernel thread
a User threads in this model are called Kernel Level Threads (KLT)

m The kernel can know of multiple threads per process, yet there are even
more threads known to the process

a M-to-N Model: Flexible mapping of user threads to less kernel threads
a Also known as hybrid thread model

Threads
Motivation Pthreads Data Structures Thread Models
F. Bellosa — Betriebssysteme WT 2016/2017 16/27

Many-to-One Model: User Level Threads (ULT)
a Kernel only manages process — multiple threads unknown to kernel
a Threads managed in user-space library (e.g., GNU Portable Threads)

+ Faster thread management Process fhread

operations (up to 100 times) \ /
+ Flexible scheduling policy
Few system resources

+ User
+ Can be used even if the OS space é é é é é é é

does not support threads | =l | B

— No parallel execution L
— Whole process blocks if Kernel
space Kernel E

only one user thread blocks %
— Need to re-implement / | \

Run-time Thread Process
parts of the OS (e.g., scheduler) system table table
Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 17/27

ULT Implementation

a System V like systems (e.g., Linux) define

the types mcontext_t and ucontext _t to keep thread state
makecontext Initialize a new context

getcontext Store currently active context

setcontext Replace current context with different one
swapcontext User-level context switching between threads

m Using those functions, calls for creating threads, yielding, wait, etc can
easily be implemented fully in user-space
a e.g., yield saves own context and replaces itself with a different context

a Periodic thread switching can be implemented using a sIGALRM
exception handler

a We will distribute an example how to use these function with an
assignment in the tutorials (ult.h/ult.c)

a An alternative interface to the context would be set jmp and longjmp

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 18/27

Address-Space Layout with Two User Level Threads

w Stack OXFFFFFFFF
a “Main stack” known to OS is used by thread
library (e.g., called via SIGALRM upcalls)

a Own execution state (= stack) for every thread
is allocated dynamically by user thread library =~ AS v

on the heap using malloc %

a Possibly own stack for (each) exception handler

Reserved for OS
Stack (Upcalls)

Stack (Thread 1)

a Heap Stack (Thread 2)
a Concurrent heap use possible

Heap

m Attention: not all heaps are reentrant!
Data
a Data v Text

a Is divided into BSS, data and read-only data 0x00000000
here as well (omitted for clarity)

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 19/27

One-to-One Model: Kernel Threads (KLT)

m Kernel knows and manages every thread

a Every thread known by kernel maps to one thread known by user
a Windows XP/Vista/7, Linux, Solaris, Mac OS X all support this

. . Process Thread
+ Real parallelism possible \ /
+ Threads block individually \
— OS manages every thread in the system
(TCB, stacks, ...)
— Syscalls needed for thread management
— Scheduling fixed in OS
Kernel E E
/ A
I
Process Thread
table table
Threads
Motivation Pthreads Data Structures Thread Models
WT 2016/2017 20/27

F. Bellosa — Betriebssysteme

Address-Space Layout with Two Kernel Level Threads

w Stack OXFFFFFFFF
a Own execution state (= stack) for every thread
a Possibly own stack for (each) exception handler

Reserved for OS
Stack (Thread 1)

w Heap AS v
m Parallel heap use possible —’
a Attention: not all heaps are thread-safe!

a Even if the heap is thread-safe: Not all heap

implementations perform well with many +

threads
Heap
a Data Data
a Is divided into BSS, data and read-only data v Text
here as well (omitted for clarity) 0x00000000
Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 21/27

KLT Implementation and Issues

m All thread management data is stored in the kernel
a Thread management functions are provided as syscalls

m What happens when a process with multiple KLTs calls fork?

m Signals are used in UNIX systems to notify a process that a particular
event has occurred

m e.g., process can ask OS to send SIGALRM after a specific time
a signal handler can run
m on the process stack
a on a stack, dedicated to the specific signal handler
a on a stack, dedicated to all signal handlers
a Who is the signal delivered to?
a All threads in process?
a One thread that receives all signals?
a The thread that set up the handler? What if multiple threads subscribe this signal?

Threads
Motivation Pthreads Data Structures Thread Models
F. Bellosa — Betriebssysteme WT 2016/2017 22/27

M-to-N Model: Hybrid Threads

® M ULTs are mapped to (at most) N KLTs

m Goal: pros of ULT and KLT — non-blocking with quick management
Create a “sufficient” number of KLTs (kernel is only aware of KLTs)
Flexibly allocate ULTs on those KLTs
e.g., Solaris 9 and earlier, Windows NT/2000 with ThreadFiber, Linux 2.4

Multiple user threads

+ Flexible scheduling on a kernel thread
policy \ |
+ Efficient execution
— Hard to debug S%Zire
— Hard to implement
e.g., blocking
e.g., number of KLTs Kernel
Kernel ~<— Kernel thread space
Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 23/27

Hybrid Thread Implementation: Scheduler Activations

a Goal: Don’t involve kernel on thread activities such as create and join

a Idea: Map multiple ULTs on each KLT

a When a ULT blocks (e.g., page fault, syscall) the user-space run-time
system runs a different ULT without switching to the kernel

a Approach: Upcalls

a The kernel notices that a thread will block and sends a signal to the process

m This upcall notifies the process of the thread id and event that happened

a The exception handler of the process can then schedule a different thread
in that process

a The kernel later informs the process that the blocking event has finished via
another upcall

@ Approach is similar to calling the ULT scheduler using sIGALRM. |t just
requires a little more cooperation by the kernel.

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 24/27

Making Single-Threaded Code Multithreaded

m Itis hard to make single-threaded code multithreaded

m Not all state should be shared between threads
m errno contains the error number of the last syscall (0 on no error)
® errno is overwritten on subsequent system calls
a Which thread does the current value belong to?

® Much existing code, including many libraries, are not re-entrant
® malloc is not always thread-safe
@ strtok is not thread-safe (use strtok_r)
a Generally: use _r variants of functions (rand_r instead of rand)

m How should stack growth be managed?

a Normally the kernel grows the (single) stack automatically when needed
a What if there are multiple stacks?

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa — Betriebssysteme WT 2016/2017 25/27

Summary

m Programs often do closely related “things” at once

a Those things can be easily mapped to the thread abstraction where
multiple threads of executions operate in the same process

m We differentiate between process information (PCB) and thread
information (TCB)

m There are different thread models

a N:1 Threads are fully managed in user-space
m 1:1 Threads are fully managed by kernel
a M:N Threads are flexibly managed either in user-space or kernel

a Multithreaded programs operate on the same data concurrently or even
in parallel

a Accessing such data must be synchronized
a This makes writing such programs challenging

Threads

F. Bellosa — Betriebssysteme WT 2016/2017 26/27

Further Reading

m Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition: Pages
85-119

@ Hybrid Threads:

m Anderson et al.: Scheduler Activations, SOSP '91
a Appavoo et al.: Scheduling in K42
m Marsh et al.: First-Class User-Level Threads, SOSP '91

Threads

F. Bellosa — Betriebssysteme WT 2016/2017 27/27

	5. Threads
	Threads
	Motivation
	Pthreads
	Data Structures
	Thread Models

