
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
5. Threads

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu

Where we ended last lecture
Processes

Program : Recipe is like Process : Cooking
Processes are a resource container for the OS
For the process it feels like it is alone: it has its own CPU and memory
The OS implements multiprogramming by rapidly switching processes

In POSIX processes duplicate themselves using fork

This creates a process hierarchy
Parent processes collect the exit status of their children by waiting for them

Processes may block, waiting for an event to happen
This happens e.g., when waiting for a system call to return (e.g., I/O, wait)
Blocked processes are not run by the OS until the event happens

New programs are loaded by overwriting a duplicate with a new
executable file using exec

Parameters and an environment can be passed to initialize the program

Threads

F. Bellosa – Betriebssysteme WT 2016/2017 2/27

Where we ended last lecture
The ABI standardizes the binary interface of programs and the OS

“Where to put stuff”
Process sections
Alignment

“How to talk to others” (calling conventions)
Within the process (functions)
Between processes (inter-process communication)
Between processes and the OS (system call)

Þ Interoperability between processes, libraries, and OS

Threads

F. Bellosa – Betriebssysteme WT 2016/2017 3/27

Where we ended last lecture

The stack stores
Local variables

Execution state of a thread

cdecl calling convention
Save old stack frame

Initialize new stack frame

Make room for local variables

Push arguments on stack in reverse order

Push return address and jump to function

Repeat with next function to call

Threads

F. Bellosa – Betriebssysteme WT 2016/2017 4a/27

old BP

 BP

 SP

Where we ended last lecture

The stack stores
Local variables

Execution state of a thread

cdecl calling convention
Save old stack frame

Initialize new stack frame

Make room for local variables

Push arguments on stack in reverse order

Push return address and jump to function

Repeat with next function to call

Threads

F. Bellosa – Betriebssysteme WT 2016/2017 4b/27

old BP

 BP

 SP

Where we ended last lecture

The stack stores
Local variables

Execution state of a thread

cdecl calling convention
Save old stack frame

Initialize new stack frame

Make room for local variables

Push arguments on stack in reverse order

Push return address and jump to function

Repeat with next function to call

Threads

F. Bellosa – Betriebssysteme WT 2016/2017 4c/27

old BP

 BP

 SP

Local Vars

Where we ended last lecture

The stack stores
Local variables

Execution state of a thread

cdecl calling convention
Save old stack frame

Initialize new stack frame

Make room for local variables

Push arguments on stack in reverse order

Push return address and jump to function

Repeat with next function to call

Threads

F. Bellosa – Betriebssysteme WT 2016/2017 4d/27

old BP

 BP

 SP

Local Vars

Arguments

Where we ended last lecture

The stack stores
Local variables

Execution state of a thread

cdecl calling convention
Save old stack frame

Initialize new stack frame

Make room for local variables

Push arguments on stack in reverse order

Push return address and jump to function

Repeat with next function to call

Threads

F. Bellosa – Betriebssysteme WT 2016/2017 4e/27

old BP

 BP

 SP

Local Vars

Arguments

Return IP

Where we ended last lecture

The stack stores
Local variables

Execution state of a thread

cdecl calling convention
Save old stack frame

Initialize new stack frame

Make room for local variables

Push arguments on stack in reverse order

Push return address and jump to function

Repeat with next function to call

Threads

F. Bellosa – Betriebssysteme WT 2016/2017 4/27

old BP

 BP

 SP

Local Vars

Arguments

Return IP

old BP 2

Local Vars 2

Arguments 2

Return IP 2

Stack Frame

Threads

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 5/27

Processes vs. Threads
In traditional OSes, each process has

it’s own address space
it’s own set of allocated resources
one thread of execution (one execution state)

Modern OSes handle processes and threads of execution more flexibly
Processes provide the abstraction of an address space and resources
Threads provide the abstraction for execution states of that AS/container

Take this with a grain of salt
Sometimes different threads even have differing address spaces
In Linux threads are regular processes with shared resources and address
space regions

Bottom line:
Þ Some data is thread local, some is thread global (but process local)

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 6/27

Why have multiple threads at all?

Many programs do multiple
“things” at once

Multi-threaded web server

Accept new connections

Read request from client

Fetch required data

Process and deliver data

Some of these activities
may block

Þ Writing a program as many sequential threads may be easier than
dancing around blocking operations

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 7/27

But wasn’t that the reasoning behind processes?

Whether to use multiple processes or threads depends on the activity!

Processes rarely share data, and if they do, they do it explicitly.

Closely related activities share data which favors threads.

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 8/27

Why have multiple threads per process?

Different example with more shared state and blocking operations
Word processor: Read input, format output, write backup file

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 9/27

Thread Libraries

Thread libraries provide an API for creating and managing threads

Pthreads
POSIX API for thread creation and synchronization (IEEE 1003.1c)
API specifies behavior of the thread library (> 60 API calls)

Internal details are up to the specific implementation of the library

Common in UNIX operating systems (Solaris, Linux, Mac OS X)
Þ You will learn how to use pthreads in the tutorials

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 10/27

Basic POSIX Thread API
Each Pthread is associated with

an identifier (Thread ID, TID)
a set of registers (including IP and SP)
a stack area to hold the execution state (functions/local vars) of that thread

Pthread create Create a new thread
Pass: pointer to pthread t (will hold TID after successful call)
Pass: attributes, start function, and arguments
Returns: 0 on success or error value

Pthread exit Terminate the calling thread
Pass: exit code (casted to a void pointer)
Free’s resources (e.g., stack)

Pthread join Wait for a specific thread to exit
Pass: pthread t to wait for (or -1 for any thread)
Pass: Pointer to pointer for exit code
Returns: 0 on success, otherwise error value

Pthread yield Release the CPU to let another thread run
Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 11/27

Pthread Example
void* greet(void *id)
{

printf("Hello, I am %ld\n", (intptr_t) id);
pthread_exit((void*) 0);

}

int main()
{

pthread_t threads[NUM];
for(int i = 0; i < NUM; ++i)
{

int status = pthread_create(threads + i, NULL,
greet, (void *) (intptr_t) i);

if(status != 0)
die("Error creating thread");

}

for(int i = 0; i < NUM; ++i)
pthread_join(threads[i], NULL);

return 0;
}

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 12/27

No free lunch

Multithreaded programming is challenging
Regardless: Whether multiple processes or multi-threading are used
Processes only share resources (e.g., memory addresses) explicitly
With threads there is more shared state, so more can possibly go wrong

The programmer needs to take care of
Dividing, ordering, and balancing activities
Dividing data
Synchronizing access to shared data

Þ We will discuss synchronization in-depth in the following lectures

Now: How threads are implemented

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 13/27

Process vs. Thread

Processes group resources

Threads encapsulate execution

Þ Each of those abstractions requires different data

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 14/27

PCB vs. TCB
We differentiate between

Process Control Block (PCB): Information needed to implement processes
Thread Control Block (TCB): Per thread data

Typical items in each category are:

PCB TCB
Address space Instruction pointer
Global variables Registers

Open files Stack
Child processes State
Pending alarms

The PCB is always known to the OS
Whether or not the OS kernel knows about threads or not depends on
the thread model

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 15/27

Thread Model Overview
The OS kernel always knows of at least one thread per process

Threads that are known to the OS kernel are called kernel threads
Threads that are known to the process are called user threads

Threads can be fully implemented in user-space
Many-to-One Model: The kernel only knows one of possibly multiple threads
User threads in this model are called User Level Threads (ULT)

The kernel can be fully aware of and responsible for managing threads
One-to-One Model: Each user thread maps to a kernel thread
User threads in this model are called Kernel Level Threads (KLT)

The kernel can know of multiple threads per process, yet there are even
more threads known to the process

M-to-N Model: Flexible mapping of user threads to less kernel threads
Also known as hybrid thread model

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 16/27

Many-to-One Model: User Level Threads (ULT)
Kernel only manages process Þ multiple threads unknown to kernel
Threads managed in user-space library (e.g., GNU Portable Threads)

+ Faster thread management
operations (up to 100 times)

+ Flexible scheduling policy
+ Few system resources
+ Can be used even if the OS

does not support threads

– No parallel execution
– Whole process blocks if

only one user thread blocks
– Need to re-implement

parts of the OS (e.g., scheduler)

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 17/27

ULT Implementation

System V like systems (e.g., Linux) define
the types mcontext t and ucontext t to keep thread state
makecontext Initialize a new context
getcontext Store currently active context
setcontext Replace current context with different one
swapcontext User-level context switching between threads

Using those functions, calls for creating threads, yielding, wait, etc can
easily be implemented fully in user-space

e.g., yield saves own context and replaces itself with a different context

Periodic thread switching can be implemented using a SIGALRM

exception handler

We will distribute an example how to use these function with an
assignment in the tutorials (ult.h/ult.c)

An alternative interface to the context would be setjmp and longjmp

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 18/27

Address-Space Layout with Two User Level Threads

Stack
“Main stack” known to OS is used by thread
library (e.g., called via SIGALRM upcalls)
Own execution state (≡ stack) for every thread
is allocated dynamically by user thread library
on the heap using malloc
Possibly own stack for (each) exception handler

Heap
Concurrent heap use possible
Attention: not all heaps are reentrant!

Data
Is divided into BSS, data and read-only data
here as well (omitted for clarity)

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 19/27

Reserved for OS

Stack (Upcalls)

Heap

Text

0xFFFFFFFF

0x00000000

AS

Data

Stack (Thread 1)

Stack (Thread 2)

One-to-One Model: Kernel Threads (KLT)

Kernel knows and manages every thread
Every thread known by kernel maps to one thread known by user
Windows XP/Vista/7, Linux, Solaris, Mac OS X all support this

+ Real parallelism possible

+ Threads block individually

– OS manages every thread in the system
(TCB, stacks, . . .)

– Syscalls needed for thread management

– Scheduling fixed in OS

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 20/27

Address-Space Layout with Two Kernel Level Threads

Stack
Own execution state (≡ stack) for every thread
Possibly own stack for (each) exception handler

Heap
Parallel heap use possible
Attention: not all heaps are thread-safe!
Even if the heap is thread-safe: Not all heap
implementations perform well with many
threads

Data
Is divided into BSS, data and read-only data
here as well (omitted for clarity)

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 21/27

Reserved for OS

Stack (Thread 1)

Heap

Data

Text

0xFFFFFFFF

0x00000000

AS

Stack (Thread 2)

KLT Implementation and Issues

All thread management data is stored in the kernel

Thread management functions are provided as syscalls

What happens when a process with multiple KLTs calls fork?

Signals are used in UNIX systems to notify a process that a particular
event has occurred

e.g., process can ask OS to send SIGALRM after a specific time
signal handler can run

on the process stack
on a stack, dedicated to the specific signal handler
on a stack, dedicated to all signal handlers

Who is the signal delivered to?
All threads in process?
One thread that receives all signals?
The thread that set up the handler? What if multiple threads subscribe this signal?

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 22/27

M-to-N Model: Hybrid Threads

M ULTs are mapped to (at most) N KLTs
Goal: pros of ULT and KLT – non-blocking with quick management
Create a “sufficient” number of KLTs (kernel is only aware of KLTs)
Flexibly allocate ULTs on those KLTs
e.g., Solaris 9 and earlier, Windows NT/2000 with ThreadFiber, Linux 2.4

+ Flexible scheduling
policy

+ Efficient execution

– Hard to debug

– Hard to implement
e.g., blocking
e.g., number of KLTs

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 23/27

Hybrid Thread Implementation: Scheduler Activations

Goal: Don’t involve kernel on thread activities such as create and join

Idea: Map multiple ULTs on each KLT
When a ULT blocks (e.g., page fault, syscall) the user-space run-time
system runs a different ULT without switching to the kernel

Approach: Upcalls
The kernel notices that a thread will block and sends a signal to the process
This upcall notifies the process of the thread id and event that happened
The exception handler of the process can then schedule a different thread
in that process
The kernel later informs the process that the blocking event has finished via
another upcall

Approach is similar to calling the ULT scheduler using SIGALRM. It just
requires a little more cooperation by the kernel.

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 24/27

Making Single-Threaded Code Multithreaded

It is hard to make single-threaded code multithreaded

Not all state should be shared between threads
errno contains the error number of the last syscall (0 on no error)
errno is overwritten on subsequent system calls
Which thread does the current value belong to?

Much existing code, including many libraries, are not re-entrant
malloc is not always thread-safe
strtok is not thread-safe (use strtok r)
Generally: use r variants of functions (rand r instead of rand)

How should stack growth be managed?
Normally the kernel grows the (single) stack automatically when needed
What if there are multiple stacks?

Threads
Motivation Pthreads Data Structures Thread Models

F. Bellosa – Betriebssysteme WT 2016/2017 25/27

Summary

Programs often do closely related “things” at once

Those things can be easily mapped to the thread abstraction where
multiple threads of executions operate in the same process

We differentiate between process information (PCB) and thread
information (TCB)

There are different thread models
N:1 Threads are fully managed in user-space
1:1 Threads are fully managed by kernel
M:N Threads are flexibly managed either in user-space or kernel

Multithreaded programs operate on the same data concurrently or even
in parallel

Accessing such data must be synchronized
This makes writing such programs challenging

Threads

F. Bellosa – Betriebssysteme WT 2016/2017 26/27

Further Reading

Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition: Pages
85–119

Hybrid Threads:
Anderson et al.: Scheduler Activations, SOSP ’91
Appavoo et al.: Scheduling in K42
Marsh et al.: First-Class User-Level Threads, SOSP ’91

Threads

F. Bellosa – Betriebssysteme WT 2016/2017 27/27

	5. Threads
	Threads
	Motivation
	Pthreads
	Data Structures
	Thread Models

