
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
06. Dispatching and Scheduling

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu


In Lecture 4 we learned about Processes
A process is a running instance of a program

Program : Recipe is like Process : Cooking

Processes are a resource container for the OS
Processes simplify the programming model greatly
Each process has its own view of the machine: It has its own CPU, address
space, open files, . . .

Processes allow for a better resource utilization
Modern OSes run multiple processes “simultaneously”
The OS implements multiprogramming by rapidly switching processes
E.g., run firefox and xmms at the “same” time
When a process waits for I/O (blocking) the OS switches to another process
that is ready for computation on the CPU
E.g., make -j n with n larger than the number of CPU cores

Dispatching Scheduling Scheduling Policies

F. Bellosa – Betriebssysteme WT 2016/2017 2/33



In Lecture 5 we learned about PCBs and TCBs

The OS maintains a process table with information about each process.

Each process is associated with a table entry: Process Control Block

Each thread is associated with a Thread Control Block
Let us assume for now, that every process has only one thread and that
PCB and TCB are consolidated in the PCB

Process ID

Process state

CPU scheduling information

CPU registers
(e.g., instruction/stack pointer)

Credentials (UID, GID, ...)

Memory-management information

I/O status information

Dispatching Scheduling Scheduling Policies

F. Bellosa – Betriebssysteme WT 2016/2017 3/33



Today: Scheduling Problem

Have K jobs ready to run
Jobs can be processes or threads

Have N CPUs with: K > N ≥ 1 CPUs

Scheduling Problem
Which jobs should the kernel assign to which CPUs?
When should it make the decision?

Dispatching Scheduling Scheduling Policies

F. Bellosa – Betriebssysteme WT 2016/2017 4/33



Dispatching

Dispatching Scheduling Scheduling Policies
Preeption vs. Scheduling Preemption Thread Switch

F. Bellosa – Betriebssysteme WT 2016/2017 5/33



Which jobs should be assigned to which CPU(s)?

We generally differentiate between dispatcher and scheduler

The dispatcher performs the actual process switch
Mechanism
Saving/restoring process context
Switching to user mode

The CPU scheduler selects the next process to run
Policy

Dispatching Scheduling Scheduling Policies
Preeption vs. Scheduling Preemption Thread Switch

F. Bellosa – Betriebssysteme WT 2016/2017 6/33



Voluntary Yielding vs. Preemption

The kernel is responsible for performing the CPU switch

The kernel does not always run and cannot dispatch a different process
unless it is invoked!

The kernel can switch at any system call
Using cooperative multitasking, the currently running process performs a
yield system call to ask the kernel to switch to another process

The kernel often wants to preempt the currently running process to
schedule a different process

Preemptive scheduling requires the kernel to be invoked in certain time
intervals
In general, the kernel uses the timer interrupt as a trigger to make
scheduling decisions after every time-slice

Dispatching Scheduling Scheduling Policies
Preeption vs. Scheduling Preemption Thread Switch

F. Bellosa – Betriebssysteme WT 2016/2017 7/33



CPU Switch From Process to Process

Dispatching Scheduling Scheduling Policies
Preeption vs. Scheduling Preemption Thread Switch

F. Bellosa – Betriebssysteme WT 2016/2017 8/33



Scheduling

Dispatching Scheduling Scheduling Policies
States Process Characteristics

F. Bellosa – Betriebssysteme WT 2016/2017 9/33



Process State
From the OS perspective, a process can be in different states:

new: The process has been created but was never run
running: Instructions are currently being executed
waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned a processor
terminated: The process has finished execution (zombie state)

Dispatching Scheduling Scheduling Policies
States Process Characteristics

F. Bellosa – Betriebssysteme WT 2016/2017 10/33



Different Schedulers
Short-term scheduler (or CPU scheduler)

Selects which process should be executed next and allocates CPU
Short-term scheduler is invoked very frequently (milliseconds)
Þ must be fast

Long-term scheduler (or job scheduler)
Selects which processes should be brought into the ready queue
Long-term scheduler is invoked very infrequently (seconds, minutes)
Þ can be slow
The long-term scheduler controls the degree of multiprogramming

We focus on the CPU scheduler in this lecture

Dispatching Scheduling Scheduling Policies
States Process Characteristics

F. Bellosa – Betriebssysteme WT 2016/2017 11/33



Process Scheduling Queues
Job queue: Set of all processes in the system
Ready queue: Processes in main memory, states: ready and waiting
Device queues: Processes waiting for an I/O device

Processes migrate among the various queues

Dispatching Scheduling Scheduling Policies
States Process Characteristics

F. Bellosa – Betriebssysteme WT 2016/2017 12/33



Scheduling Policies

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 13/33



Categories of Scheduling Policies

Different scheduling policies are needed in different environments

Batch Scheduling
Still widespread in business: payroll, inventory, accounting, . . .
No users waiting for a quick response
Non-preemptive algorithms acceptable Þ less switches Þ less overhead

Interactive Scheduling
Need to optimize for response time
Preemption essential to keep processes from hogging CPU

Real-Time Scheduling
Guarantee completion of jobs within time constraints
Need to be able to plan when which process runs and how long
Preemption is not always needed

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 14/33



Scheduling Goals Vary for Different Categories

All Systems
Fairness give each process a fair share of CPU
Balance keep all parts of the system busy

Batch Scheduling
Throughput # of processes that complete per time unit
Turnaround Time time from submission to completion of a job
CPU Utilization keep the CPU as busy as possible

Interactive Scheduling
Waiting time time each process waits in ready queue
Response Time time from request to first response

For a job: e.g., key press to echo
For a scheduler: submission of a job to the first time it is dispatched

Real-Time Scheduling
Meeting Deadlines finish jobs in time
Predictability minimize jitter

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 15/33



First-Come, First-Served (FCFS) Scheduling
FCFS: Schedule the processes in the order of arrival
Suppose that 3 processes arrive in the order: P1, P2, P3 (at time 0)

Process Burst Time
P1 24
P2 3
P3 3

The Gantt Chart for the schedule is:

Turnaround times: P1 = 24, P2 = 27, P3 = 30
Average turnaround time: 24+27+30

3 = 27 Þ Can we do better?

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 16/33



First-Come, First-Served (FCFS) Scheduling
Suppose that the 3 processes arrived in the order: P2, P3, P1 (at time 0)

Process Burst Time
P1 24
P2 3
P3 3

Turnaround times: P1 = 30 ; P2 = 3 ; P3 = 6
Average turnaround time: 30+3+6

3 = 13
Þ Much better than the previous 27

Good scheduling can reduce turnaround time

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 17/33



Shortest-Job-First (SJF) Scheduling

FCFS is prone to Convoy effect
One long job arrived first
All short (“fast”) jobs now have to wait for the first job to finish

Þ Idea: Run shortest jobs first (SJF)

SJF has optimal average turnaround (and waiting, and response) times
Assume sorted jobs by SJF: make formula for average turnaround time
Switch any two jobs j, k, where j<k Þ longer job now earlier
Contradiction: Average turnaround time larger (subtract times)

Challenge: Cannot know job lengths in advance

Solution: Predict length of next CPU burst for each process
Þ Schedule the process with the shortest burst next

Now suboptimal turnaround time possible
(e.g., longest job has shortest bursts)
Still optimizes waiting and response times

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 18/33



SJF: Estimating the Length of Next CPU Burst
Length of previous CPU bursts Þ exponential averaging

tn = actual length of nth CPU burst
τn+1 = predicted value for the next CPU burst
Define: τn+1 = αtn + (1− α)τn, with 0 ≤ α ≤ 1

Example:
α = 0.5

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 19/33



CPU vs. I/O Burst Cycles

Why do CPU bursts exist?
CPU burst then I/O wait

Histogram of CPU burst times

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 20/33



Process Behavior: Boundedness
Processes can be characterized as:

(a) CPU-bound process Spends more time doing computations
Þ few very long CPU bursts

(b) I/O-bound process Spends more time doing I/O than computations
Þ many short CPU bursts

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 21/33



Preemptive Shortest-Job-First (PSJF) Scheduling
SJF optimizes waiting time and response time
(and offline also turnaround time)

But what about throughput?
CPU bound jobs hold CPU until exit or I/O Þ poor I/O device utilization

Idea: SJF, but preempt periodically to make a new scheduling decision
At each time slice schedule job with shortest remaining time next
Alternatively: Schedule job whose next CPU burst is the shortest

Process Arrival Time Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 22/33



Round Robin (RR) Scheduling

Batch schedulers suffer from starvation and do not provide fairness

Idea: Each process runs for a small unit of CPU time
Time quantum/time slice length usually 10-100 milliseconds
Preempt processes that have not blocked by the end of the time slice
Append current thread to end of run queue, run next thread

Time slice length needs to balance interactivity and overhead
Need time to dispatch new process (overhead)
If time slice is much larger than dispatch time
Þ dispatch overhead is small compared to run-time of process
If the time slice length is in the area of the dispatch time
Þ waste 50% of CPU time for switching between processes

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 23/33



Round Robin (RR) Scheduling

Example:
Time slice length = 4 time units Process Burst Time

P1 24
P2 3
P3 3

Gantt chart:

Typically, higher average turnaround than SJF, but better response time

Good average waiting time if job lengths vary

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 24/33



Virtual Round Robin (RR) Scheduling

RR is unfair for I/O-bound jobs
I/O-bound jobs block before they use up their time quantum

CPU-bound jobs use up their entire quantum

Þ with same number of slices, CPU-bound jobs get more CPU time

Idea: Virtual Round Robin
Put jobs that didn’t use up their quantum into an additional queue

Store the share of the time-slice that they have not
used up with the job

Give jobs in the additional queue priority over jobs
in other queue until they have used up their quantum

Afterwards put them back in normal queue

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 25/33



(Strict) Priority Scheduling

Not all jobs are equally important
Þ Different priorities

Priority Scheduling: Associate priority
number with each process

Allocate CPU RR to processes
with the highest priority
Can be preemptive or non-preemptive
Usually: smallest integer ≡ highest priority

SJF ≡ Priority scheduling where priority is the predicted next burst time

Strict priority scheduling: processes with low priorities never execute if
there is always a process runnable with a higher priority (starvation)

Possible Solution: Weaken strictness through aging
Þ As time progresses increase the priority of the processes that have not
run

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 26/33



Multi-Level Feedback Queue (MLFB) Scheduling

Context switching can be expensive
Can we get a good trade-off between interactivity and overhead?

Goals:
Give higher priority to I/O-bound jobs
(they usually don’t use up their quantum but deserve a fair CPU share)
Give low priority to CPU-bound jobs, but run them for longer at a time
(rather run the job every “round” for twice the time)

Idea: Different queues with different priorities and time slices lengths
Schedule queues with (static) priority scheduling
Double time slice length in each next-lower priority
Promote processes into a higher priority queue when
they don’t use up their quantum repeatedly
Demote processes that repeatedly use up their quantum

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 27/33



Multi-Level Feedback Queue (MLFB) Scheduling

Example with three queues:

Q0: RR time slice length 8 ms

Q1: RR time slice length 16 ms

Q2: FCFS

Example Scheduling:
A new job enters queue Q0 which is scheduled using RR
When the job is dispatched, it receives 8 milliseconds
If it does not finish in 8 milliseconds, job is moved to queue Q1

In Q1 the job is run for additional 16 milliseconds
If it still does not complete, it is preempted and moved to queue Q2

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 28/33



Priority Donation

Problem: Process B may wait for result of process A
A has a lower priority than B

Þ B has effectively lower priority now

Solution: Priority donation (a.k.a. priority inheritance)
Give A priority of B as long as B waits for A
What if C, D and E also wait for B?
Should we donate priorities transitively?

Þ A only gets highest priority of B, C, D, E

Shouldn’t A’s priority increase even more if many processes wait for it?

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 29/33



Lottery Scheduling

Issue number of lottery tickets to processes
More tickets for processes with higher priority
Tickets not associated with concrete numbers

Amount of tickets controls average proportion of CPU for each process

∃ a list of all runnable processes
A schedule operation draws a random number N and traverses the list to
find the winner of the timeslice (≡ process with the N’th ticket)

Processes may transfer tickets to other processes if they wait for them
Ticket donation “stronger” than priority donation.

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 30/33



Real-Time Scheduling

Not relevant for this lecture

If you are interested, a good starting point is:
Jane W.S. Liu, “Real-Time Systems”, Prentice Hall, 2000

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa – Betriebssysteme WT 2016/2017 31/33



Summary

Processes have phases of computation and of waiting for I/O
Appropriate switching between processes increases the utilization of
computing systems

Based on goals, the scheduler decides what appropriate means
Long-term scheduler: degree of multiprogramming
Short-term scheduler: which process to run next

Dispatching can only happen when the OS is invoked
Cooperative scheduling: The currently running thread yields (syscall)
Preemptive scheduling: OS is called periodically (e.g., timer interrupt) to
switch threads

Dispatching Scheduling Scheduling Policies

F. Bellosa – Betriebssysteme WT 2016/2017 32/33



Further Reading

Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition:
Pages 149–167

Silberschatz, Galvin, Gagne, “Operating System Concepts”, 8th Edition:
Pages 183–223

Waldspurger/Weihl, “Lottery Scheduling: Flexible Proportional-Share
Resource Management”

Dispatching Scheduling Scheduling Policies

F. Bellosa – Betriebssysteme WT 2016/2017 33/33


	06. Dispatching and Scheduling
	Dispatching
	Dispatching
	Preeption vs. Scheduling
	Preemption
	Thread Switch

	Scheduling
	States
	Process Characteristics

	Scheduling Policies
	Scheduling Categories and Goals
	Batch Systems
	Interactive Systems
	Real-Time Systems



