KIT

Karlsruhe Institute of Technology

Betriebssysteme

06. Dispatching and Scheduling
Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) — OPERATING SYSTEMS GROUP

4 Europaviertel - Waldstadt - Hauptfriedhof - Durlacher Tor - 3
Marktplatz - Europaplatz - Mathystr. - Hbf Vorplatz - Tivoli
Monta
VERKEHRSHINWEIS Ri Ri
Waldstadt Europals(he Schule ab .04 0.34] 1.04) 1.34 — = 443 — = 19. 23.
- Osteroder StraB3 .05(0.35/ 1.05(1.35| — = 444, — = 19.(23.4
- Elbinger Str (Ost) .06/ 0.36/ 1.06| 1.36| — . 445 — = 19. 23.
- Jagerhau: .07| 0.37| 1.07| 137 — = 446 — = 19. 23.
- Zentrum = — 14 = = L1¢ |23
—Glogauer StraBe .09| 0.39 1.09| 1.39] — = 448 — = 19. 23.
- Im Eichbaumle .10(0.40, 1.10| 1.40, — — 449 — — 19. 23!
Hagsfeld Facherbad @ .11(0.41) 1.11| 141 — = 4500 — = 19. 23!
Rintheim Sinsheimer StraBe .12 0.42) 1.12| 142 — — 451 — =i 19. 23
Karlsruhe Hirtenweg/Techn.park 13| 0.43| 113 143 — | — | 452 — — 19. 23!
- Hauptfriedhof 0.45) 1,45/ = .24 18 [23
- Karl-Wilhelm-Platz .16| 0.46] — = =; = 4.55| .2! 1l 19. 1 23
- Durlacher Tor / KIT-Campus Stid 18| 048] — | — | = | — | 458 .21 Eoalo Sz
- Kronenplatz (Kaiserstr.) .20/ 0.50, — — = — 5.00 .3 40 Min. 19.. 00| Min. X
- Marktplatz (Kaiserstr.) .21| 0.51] — — = = 5.01 -1 19.. % X
- HerrenstraBe 23| 0.53] — = = = 5.03| 19.. X
- Europapl./PostGalerie (Kaiser) .55 . = = = 1 Lo
- Eumpapl /PostGalerie (Karl) .26| 0.56] — = 4.36| 4.56| 5.06 1 X
- Karlst .28 0.58) — =i 4.38 4.58 5.08 .48 19..
- MathvstraBe .29| 0.59] "= — 4.39| 4.59| 5.09| .49 19..

KIT - Universitét des Landes Baden-Wirttemberg und
nationales in der Helmholl

http://www.kit.edu

In Lecture 4 we learned about Processes

m A process is a running instance of a program
m Program : Recipe is like Process : Cooking

m Processes are a resource container for the OS
a Processes simplify the programming model greatly
a Each process has its own view of the machine: It has its own CPU, address
space, openfiles, ...

m Processes allow for a better resource utilization

® Modern OSes run multiple processes “simultaneously”

a The OS implements multiprogramming by rapidly switching processes

a E.g., run firefox and xmms at the “same” time

m When a process waits for I/O (blocking) the OS switches to another process
that is ready for computation on the CPU

E.g., make -j n with n larger than the number of CPU cores

Dispatching Scheduling Scheduling Policies

F. Bellosa — Betriebssysteme WT 2016/2017 2/33

In Lecture 5 we learned about PCBs and TCBs

m The OS maintains a process table with information about each process.
m Each process is associated with a table entry: Process Control Block

m Each thread is associated with a Thread Control Block

m Let us assume for now, that every process has only one thread and that
PCB and TCB are consolidated in the PCB

a Process ID process state
m Process state process number
m CPU scheduling information program counter
a CPU registers :
(e.g., instruction/stack pointer) [ogSters
a Credentials (UID, GID, ...) memory limits
a Memory-management information list of open files
a /O status information v
Dispatching Scheduling Scheduling Poli

F. Bellosa — Betriebssysteme WT 2016/2017

cles

3/33

Today: Scheduling Problem

a Have K jobs ready to run
a Jobs can be processes or threads

a Have N CPUs with: k > N > 1 CPUs

m Scheduling Problem

a Which jobs should the kernel assign to which CPUs?
a When should it make the decision?

Dispatching Scheduling Scheduling Policies

F. Bellosa — Betriebssysteme WT 2016/2017 4/33

Dispatching

Dispatching Scheduling Scheduling Policies
Preeption vs. Scheduling Preemption Thread Switch
F. Bellosa — Betriebssysteme WT 2016/2017 5/33

Which jobs should be assigned to which CPU(s)?

We generally differentiate between dispatcher and scheduler

m The dispatcher performs the actual process switch
a Mechanism
a Saving/restoring process context
m Switching to user mode

@ The CPU scheduler selects the next process to run

a Policy
Dispatching Scheduling Scheduling Policies
Preeption vs. Scheduling Preemption Thread Switch

F. Bellosa — Betriebssysteme WT 2016/2017 6/33

Voluntary Yielding vs. Preemption

m The kernel is responsible for performing the CPU switch

a The kernel does not always run and cannot dispatch a different process
unless it is invoked!

a The kernel can switch at any system call
a Using cooperative multitasking, the currently running process performs a
yield system call to ask the kernel to switch to another process

m The kernel often wants to preempt the currently running process to
schedule a different process
a Preemptive scheduling requires the kernel to be invoked in certain time
intervals
a In general, the kernel uses the timer interrupt as a trigger to make
scheduling decisions after every time-slice

Dispatching Scheduling Scheduling Policies
Preeption vs. Scheduling Preemption Thread Switch

F. Bellosa — Betriebssysteme WT 2016/2017 7/33

CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call
executing u

3 | save state into PCB, |

N idle

lreload state from PCB,I

ridle interrupt or system call executing

I_\l-

| save state into PCB, |

~

. idle

|reload state from PCB|

executing 1[\—,

Dispatching Scheduling Scheduling Policies
Preeption vs. Scheduling Preemption Thread Switch
F. Bellosa — Betriebssysteme WT 2016/2017 8/33

Scheduling

Dispatching Scheduling Scheduling Policies
States Process Characteristics

F. Bellosa — Betriebssysteme WT 2016/2017 9/33

Process State

a From the OS perspective, a process can be in different states:
a new: The process has been created but was never run

running: Instructions are currently being executed

waiting: The process is waiting for some event to occur

ready: The process is waiting to be assigned a processor

terminated: The process has finished execution (zombie state)

admitted interrupt exit terminated

scheduler dispatch

I/0 or event completion 1/0 or event wait

Dispatching Scheduling Scheduling Policies
States Process Characteristics

F. Bellosa — Betriebssysteme WT 2016/2017 10/33

Different Schedulers

m Short-term scheduler (or CPU scheduler)
a Selects which process should be executed next and allocates CPU
a Short-term scheduler is invoked very frequently (milliseconds)
— must be fast

® Long-term scheduler (or job scheduler)
m Selects which processes should be brought into the ready queue
a Long-term scheduler is invoked very infrequently (seconds, minutes)
— can be slow
m The long-term scheduler controls the degree of multiprogramming

a We focus on the CPU scheduler in this lecture

Dispatching Scheduling Scheduling Policies
States Process Characteristics

F. Bellosa — Betriebssysteme WT 2016/2017 11/33

Process Scheduling Queues

m Job queue: Set of all processes in the system
a Ready queue: Processes in main memory, states: ready and waiting
m Device queues: Processes waiting for an I/O device

Processes migrate among the various queues

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

Dispatching
States

F. Bellosa — Betriebssysteme

queue header PCB; PCB,
head —=
tail | registers registers
. .
. .
head +——=
tal =
head T—=
@l — PCB; PCB,, PCBg
/ _— —_— ™=
head 1
tail
Scheduling Scheduling Policies
Process Characteristics
WT 2016/2017 12/33

Scheduling Policies

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems
F. Bellosa — Betriebssysteme WT 2016/2017 13/33

Categories of Scheduling Policies

Different scheduling policies are needed in different environments

a Batch Scheduling
a Still widespread in business: payroll, inventory, accounting, ...
a No users waiting for a quick response
a Non-preemptive algorithms acceptable — less switches — less overhead

a Interactive Scheduling

a Need to optimize for response time
m Preemption essential to keep processes from hogging CPU

a Real-Time Scheduling
a Guarantee completion of jobs within time constraints
a Need to be able to plan when which process runs and how long
a Preemption is not always needed

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 14/33

Scheduling Goals Vary for Different Categories

m All Systems
a Fairness give each process a fair share of CPU
a Balance keep all parts of the system busy

a Batch Scheduling
a Throughput # of processes that complete per time unit
a Turnaround Time time from submission to completion of a job
a CPU Utilization keep the CPU as busy as possible

m Interactive Scheduling
a Waiting time time each process waits in ready queue
a Response Time time from request to first response
a For ajob: e.g., key press to echo
m For a scheduler: submission of a job to the first time it is dispatched

m Real-Time Scheduling
a Meeting Deadlines finish jobs in time
a Predictability minimize jitter

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 15/33

First-Come, First-Served (FCFS) Scheduling

m FCFS: Schedule the processes in the order of arrival
m Suppose that 3 processes arrive in the order: Py, P», P3 (at time 0)

Process | Burst Time
P; 24
Ps 3
Ps 3

a The Gantt Chart for the schedule is:

P4 Py Pj

0 24 27 30

a Turnaround times: Py = 24, P, = 27, P3 = 30
 Average turnaround time: 242430 — 27 — Can we do better?

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 16/33

First-Come, First-Served (FCFS) Scheduling

m Suppose that the 3 processes arrived in the order: Po, Pz, P; (at time 0)

Process | Burst Time
P; 24
P 3
Ps 3
P Pj P4

0

@ Turnaround times: Py =30; P>, =3;P3 =6
 Average turnaround time: 30346 — 13
— Much better than the previous 27

Dispatching

Scheduling Categories and Goals
F. Bellosa — Betriebssysteme

30

Good scheduling can reduce turnaround time

Scheduling

Batch Systems

Interactive Systems

Scheduling Policies
Real-Time Systems
WT 2016/2017 17/33

Shortest-Job-First (SJF) Scheduling

a FCFS is prone to Convoy effect
a One long job arrived first
a All short (“fast”) jobs now have to wait for the first job to finish

— |dea: Run shortest jobs first (SJF)

m SJF has optimal average turnaround (and waiting, and response) times
® Assume sorted jobs by SJF: make formula for average turnaround time
a Switch any two jobs j, k, where j<k = longer job now earlier
a Contradiction: Average turnaround time larger (subtract times)

a Challenge: Cannot know job lengths in advance

m Solution: Predict length of next CPU burst for each process
— Schedule the process with the shortest burst next
a Now suboptimal turnaround time possible
(e.g., longest job has shortest bursts)
a Still optimizes waiting and response times

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 18/33

SJF: Estimating the Length of Next CPU Burst

a Length of previous CPU bursts — exponential averaging
m 1, = actual length of n"” CPU burst
a 7,41 = predicted value for the next CPU burst
u Define: 711 = aty + (1 — @), with0 < a0 < 1

a Example:
a=05
12
T 10
8 -
t 6
4 =
2 -
L 1 1 L L L 1 1
time ——
CPU burst (t) 6 4 6 4 13 13 13
"guess" (t) 10 8 6 6 5 9 11 12
Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 19/33

CPU vs. I/0 Burst Cycles

a Why do CPU bursts exist?
a CPU burst then I/0O wait

Histogram of CPU burst times

load store
add store
read from file

wait for I/O

store increment

160 |-

140

s
n
o

o
o

frequency

60

40

20

index
write to file

wait for I/O

load store
add store
read from file

wait for I/0

16 24 32
burst duration (milliseconds)

Dispatching Scheduling
Scheduling Categories and Goals Batch Systems

F. Bellosa — Betriebssysteme

40

Interactive Systems

WT 2016/2017

CPU burst

1/O burst

CPU burst

1/Q burst

CPU burst

1/O burst

Scheduling Policies
Real-Time Systems

20/33

Process Behavior: Boundedness

m Processes can be characterized as:
(a) CPU-bound process Spends more time doing computations
— few very long CPU bursts
(b) 1/0O-bound process Spends more time doing I/O than computations
— many short CPU bursts

@ CC—— —F— — 1 |

/

Long CPU burst

Waiting for /0
Short CPU burst

/

1 I I | | I 1 I
o) 1 Lt Lf Lf Lt Lt LT l; Lt l; —
Time
—_—
Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 21/33

Preemptive Shortest-Job-First (PSJF) Scheduling

m SJF optimizes waiting time and response time
(and offline also turnaround time)

a But what about throughput?
a CPU bound jobs hold CPU until exit or I/0O — poor 1/O device utilization

m Idea: SJF, but preempt periodically to make a new scheduling decision

a At each time slice schedule job with shortest remaining time next

a Alternatively: Schedule job whose next CPU burst is the shortest

0
Dispatching

Scheduling Categories and Goals
F. Bellosa — Betriebssysteme

Process | Arrival Time | Burst Time
P; 0 8
Ps 1 4
P3 2 9
P4 3 5
P1 4 P1 PS
1 5 10 17

Scheduling
Batch Systems

Interactive Systems

WT 2016/2017

26
Scheduling Policies
Real-Time Systems
22/33

Round Robin (RR) Scheduling

m Batch schedulers suffer from starvation and do not provide fairness

m |dea: Each process runs for a small unit of CPU time
a Time quantum/time slice length usually 10-100 milliseconds
a Preempt processes that have not blocked by the end of the time slice
a Append current thread to end of run queue, run next thread

Current Next Current
process process process

e Hel—A] [P HeHAe]

a Time slice length needs to balance interactivity and overhead
a Need time to dispatch new process (overhead)
a If time slice is much larger than dispatch time
— dispatch overhead is small compared to run-time of process
a If the time slice length is in the area of the dispatch time
— waste 50% of CPU time for switching between processes
Dispatching Scheduling Scheduling Policies

Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 23/33

Round Robin (RR) Scheduling

m Example: :
Time slice length = 4 time units Process | Burst Time
P4 24
Ps 3
Ps 3
a Gantt chart:
= E. | B B B i 2 i
0 4 7 10 14 18 22 26 30

a Typically, higher average turnaround than SJF, but better response time
® Good average waiting time if job lengths vary

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems
F. Bellosa — Betriebssysteme WT 2016/2017 24/33

Virtual Round Robin (RR) Scheduling

® RRis unfair for I/0O-bound jobs
a |/O-bound jobs block before they use up their time quantum
a CPU-bound jobs use up their entire quantum
— with same number of slices, CPU-bound jobs get more CPU time

a Idea: Virtual Round Robin
a Put jobs that didn’t use up their quantum into an additional queue

m Store the share of the time-slice that they have not
used up with the job

a Give jobs in the additional queue priority over jobs
in other queue until they have used up their quantum

a Afterwards put them back in normal queue

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems
WT 2016/2017 25/33

F. Bellosa — Betriebssysteme

(Strict) Priority Scheduling

m Not all jobs are equally important
— Different priorities

Queue
headers

Runnable processes
——

Priority 4

— H |

a Priority Scheduling: Associate priority
number with each process

Priority 3

— L H]

a Allocate CPU RR to processes

Priority 2

—]

with the highest priority
a Can be preemptive or non-preemptive

Priority 1

m Usually: smallest integer = highest priority

m SJF = Priority scheduling where priority is the predicted next burst time

m Strict priority scheduling: processes with low priorities never execute if
there is always a process runnable with a higher priority (starvation)

a Possible Solution: Weaken strictness through aging

— As time progresses increase the priority of the processes that have not

run

Dispatching Scheduling
Scheduling Categories and Goals Batch Systems

F. Bellosa — Betriebssysteme

Scheduling Policies

Interactive Systems Real-Time Systems

WT 2016/2017 26/33

Multi-Level Feedback Queue (MLFB) Scheduling

a Context switching can be expensive
a Can we get a good trade-off between interactivity and overhead?

a Goals:
a Give higher priority to 1/0-bound jobs
(they usually don’t use up their quantum but deserve a fair CPU share)
a Give low priority to CPU-bound jobs, but run them for longer at a time
(rather run the job every “round” for twice the time)

m |dea: Different queues with different priorities and time slices lengths
m Schedule queues with (static) priority scheduling
a Double time slice length in each next-lower priority
a Promote processes into a higher priority queue when
they don’t use up their quantum repeatedly
m Demote processes that repeatedly use up their quantum

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 27/33

Multi-Level Feedback Queue (MLFB) Scheduling

a Example with three queues:

a Q: RRtime slice length 8 ms
a Qq: RRtime slice length 16 ms
A .

[e P " QeiFOPS

a Example Scheduling:

a A new job enters queue @ which is scheduled using RR
a When the job is dispatched, it receives 8 milliseconds

a If it does not finish in 8 milliseconds, job is moved to queue Q,

a In @ the job is run for additional 16 milliseconds

a If it still does not complete, it is preempted and moved to queue Qs

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 28/33

Priority Donation

m Problem: Process B may wait for result of process A
a A has a lower priority than B

— B has effectively lower priority now

m Solution: Priority donation (a.k.a. priority inheritance)

a Give A priority of B as long as B waits for A
m What if C, D and E also wait for B?
a Should we donate priorities transitively?

— A only gets highest priority of B, C, D, E

a Shouldn’t A’s priority increase even more if many processes wait for it?

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 29/33

Lottery Scheduling

a Issue number of lottery tickets to processes
m More tickets for processes with higher priority
a Tickets not associated with concrete numbers

® Amount of tickets controls average proportion of CPU for each process

m Jalist of all runnable processes
a A schedule operation draws a random number N and traverses the list to
find the winner of the timeslice (= process with the N'th ticket)

total = 20
random [0 .. 19] =15

I O 3 N 0 [EY
[v]

\-/
=10 =12 ZX=17
x> 15? X>15? X>15?

no no yes

m Processes may transfer tickets to other processes if they wait for them
a Ticket donation “stronger” than priority donation.

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems

F. Bellosa — Betriebssysteme WT 2016/2017 30/33

Real-Time Scheduling
m Not relevant for this lecture

m If you are interested, a good starting point is:
m Jane W.S. Liu, “Real-Time Systems”, Prentice Hall, 2000

Dispatching Scheduling Scheduling Policies
Scheduling Categories and Goals Batch Systems Interactive Systems Real-Time Systems
F. Bellosa — Betriebssysteme WT 2016/2017 31/33

Summary

m Processes have phases of computation and of waiting for 1/0

a Appropriate switching between processes increases the utilization of
computing systems

a Based on goals, the scheduler decides what appropriate means

a Long-term scheduler: degree of multiprogramming
m Short-term scheduler: which process to run next

m Dispatching can only happen when the OS is invoked

m Cooperative scheduling: The currently running thread yields (syscall)
a Preemptive scheduling: OS is called periodically (e.g., timer interrupt) to
switch threads

Dispatching Scheduling Scheduling Policies

F. Bellosa — Betriebssysteme WT 2016/2017 32/33

Further Reading

m Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition:
Pages 149-167

m Silberschatz, Galvin, Gagne, “Operating System Concepts”, 8th Edition:
Pages 183-223

a Waldspurger/Weihl, “Lottery Scheduling: Flexible Proportional-Share
Resource Management”

Dispatching Scheduling Scheduling Policies

F. Bellosa — Betriebssysteme WT 2016/2017 33/33

	06. Dispatching and Scheduling
	Dispatching
	Dispatching
	Preeption vs. Scheduling
	Preemption
	Thread Switch

	Scheduling
	States
	Process Characteristics

	Scheduling Policies
	Scheduling Categories and Goals
	Batch Systems
	Interactive Systems
	Real-Time Systems

