KIT

Karlsruhe Institute of Technology

Betriebssysteme

08. Practical Synchronization by Example
Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) — OPERATING SYSTEMS GROUP

KIT - Universitét des Landes Baden-Wirttemberg und
nationales in der Helmholl i

http://www.kit.edu

Where we ended last lecture

a There is often the need for processes or threads to communicate
a Message passing facilities provide explicit send and receive functions to
exchange messages
a Implicitly shared memory between threads or explicitly shared memory
between processes allows exchanging information by modifying shared
state

a When communicating, data races need to be taken into account

m Common techniques to synchronizes access to shared data include

a Interlocked atomic operations
a Spinlocks

m Semaphores

a Futexes

Classic Synchronization Problems Deadlocks

F. Bellosa — Betriebssysteme WT 2016/2017 2/33

Classic Synchronization Problems

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 3/33

POSIX Thread Synchronization

m POSIX provides a number of synchronization constructs that are based
on spinlocks and semaphores described in the last lecture

® pthread mutex_t provides the functionality of the previously discussed
binary semaphore

a Implemented as a futex in Linux

® pthread_cond_t implement condition variables which can be used in
scenarios in which a counting semaphore is needed albeit with easier
usage semantics

® pthread.rwlock t implements reader-writer-locks in POSIX

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 4/33

Pthread Mutex

Pthread Mutex call Description

pthread mutex_init Create and initialize a new mutex
pthread mutex destroy | Destroy and free existing mutex
pthread mutex_lock Enter critical section or block
pthread mutex trylock | Enter critical section or return with error
pthread mutex unlock Leave critical section

m Statically allocated mutexes cannot be initialized with
pthread mutex_init
m [nitialize such mutexes with the PTHREAD MUTEX_INITIALIZER constant

a Mutexes that are allocated on the heap with malloc need to be
destroyed with pthread mutex destroy before freeing them

® pthread mutex_trylock returns EBUSY if it cannot enter the CS

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 5/33

Pthread Mutex Example

typedef struct {
int count;
pthread_mutex_t lock;
} Count;

void inc(Count »*num)

{
pthread_mutex_lock (&num.lock);
num.count++;

pthread_mutex_unlock(&num.lock);

void dec(Count »*num)

{
pthread_mutex_lock (&num.lock);
num.count++;

pthread_mutex_unlock (&num.lock);

{

int main()

Count num;

num.count = 0;

pthread_mutex_init (
&num.lock, NULL);

int 1i;
#pragma omp parallel for
for(1 = 0; 1 < 42; ++i)

{
inc(&num);
dec(&num) ;
}
[...]
pthread_mutex_destroy (
&num.lock);

[...]

Classic Synchronization Problems
Mutual Exclusion Producer-Consumer Problem
F. Bellosa — Betriebssysteme

Readers-Writers Problem

Deadlocks

WT 2016/2017

Dining-Philosophers

6/33

Producer-Consumer Problem

m Consider the producer-consumer problem _
(also known as bounded-buffer problem) count =3

m A buffer is shared between a producer

and a consumer (here: LIFO)
Item
a An integer count keeps track of the number of :
currently available (previously produced) items tem
Item
Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 7a/33

Producer-Consumer Problem

a Consider the producer-consumer problem _
(also known as bounded-buffer problem) count =4

m A buffer is shared between a producer

and a consumer (here: LIFO)
Item
a An integer count keeps track of the number of
currently available (previously produced) items Iltem
m Every time, the producer produces an item, Item
it places it in the buffer and increments count ltem
Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 7b/33

Producer-Consumer Problem

a Consider the producer-consumer problem
(also known as bounded-buffer problem)
m A buffer is shared between a producer
and a consumer (here: LIFO)

count=4

Item

a An integer count keeps track of the number of

currently available (previously produced) items Item

a Every time, the producer produces an item, Item
it places it in the buffer and increments count

Item

m When the buffer is full, the producer needs to
sleep until the consumer consumed an item

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers
F. Bellosa — Betriebssysteme WT 2016/2017 7c/33

Producer-Consumer Problem

m Consider the producer-consumer problem 3

(also known as bounded-buffer problem) count =
m A buffer is shared between a producer

and a consumer (here: LIFO)

Item

a An integer count keeps track of the number of

currently available (previously produced) items Item
m Every time, the producer produces an item, Item

it places it in the buffer and increments count

m When the buffer is full, the producer needs to
sleep until the consumer consumed an item

m When the consumer consumes an item, it removes the item from the buffer
and decrements count

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers
F. Bellosa — Betriebssysteme WT 2016/2017 7d/33

Producer-Consumer Problem

a Consider the producer-consumer problem
(also known as bounded-buffer problem)
m A buffer is shared between a producer
and a consumer (here: LIFO)

count=0

a An integer count keeps track of the number of
currently available (previously produced) items

a Every time, the producer produces an item,
it places it in the buffer and increments count

m When the buffer is full, the producer needs to
sleep until the consumer consumed an item

m When the consumer consumes an item, it removes the item from the buffer
and decrements count

a When the buffer is empty, the consumer needs to sleep until the producer
produces an item

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 7/33

Producer-Consumer Problem

void producer ()

{

Item newltem;

for(;;) // ever

{

newlItem = produce();

count++;

if(count == 1)
wake_up (consumer

if (count == MAX_ITEMS
sleep();
insert (newltem);

) i

)

void consumer ()
{

Item item;

for(;;) // ever
{

if(count == 0)
sleep();

item = remove () ;
count——;

if(count == MAX_ITEMS - 1)
wake_up (producer);

consume (item);

Classic Synchronization Problems
Mutual Exclusion

F. Bellosa — Betriebssysteme

Producer-Consumer Problem

Deadlocks
Dining-Philosophers
8a/33

Readers-Writers Problem
WT 2016/2017

Producer-Consumer Problem

void producer ()
{

Item newlItem;

for(;;) // ever

{

newlItem = produce();

if (count == MAX_ITEMS)
sleep();

insert (newlItem);
count++;

if(count == 1)
wake_up (consumer);

}

void consumer ()

{
Item item;
for(;;) // ever
{
if(count == 0)
sleep();

item = remove () ;
count——;

if(count == MAX_ITEMS - 1)

wake_up (producer);

consume (item);

}

m Race condition on count as demonstrated in last lecture

Classic Synchronization Problems

Deadlocks

Mutual Exclusion
F. Bellosa — Betriebssysteme

Producer-Consumer Problem

Readers-Writers Problem Dining-Philosophers

WT 2016/2017 8/33

Non-Solution with mutex

void producer ()
{
Item newlItem;
for(;;) // ever
{
newlItem = produce();
if(count == MAX_ITEMS)
sleep();
mutex_lock (&lock);
insert (newlItem);
count++;
mutex_unlock (&lock);
if(count == 1)
wake_up (consumer);

void consumer ()
{
Item item;
for(;;) // ever
{
if(count == 0)
sleep();
mutex_lock (&lock);
item = remove () ;
count——;
mutex_unlock (&lock);
if(count == MAX_ITEMS - 1)
wake_up (producer);

consume (item);

Classic Synchronization Problems
Mutual Exclusion Producer-Consumer Problem

F. Bellosa — Betriebssysteme

Deadlocks
Dining-Philosophers
9a/33

Readers-Writers Problem
WT 2016/2017

Non-Solution with mutex

void producer ()

{

Item newlItem;
for(;;) // ever
{

newlItem = produce();

if(count == MAX_ITEMS)
sleep();

mutex_lock (&lock);

insert (newlItem);

count++;

mutex_unlock (&lock);

if(count == 1)
wake_up (consumer);

void consumer ()

{

Item item;

for(;;) // ever

{

if(count == 0)

sleep();
mutex_lock (

&lock);

item = remove () ;

count——;

mutex_unlock (&lock);
if(count == MAX_ITEMS - 1)
wake_up (producer);

consume (item

)i

m if statements can still be racy

Classic Synchronization Problems
Mutual Exclusion Producer-Consumer Problem

F. Bellosa — Betriebssysteme

Readers-Writers Problem

WT 2016/2017

Deadlocks
Dining-Philosophers
9/33

Another non-Solution with mutex

void producer () void consumer ()
{ {
Item newltem; Item item;
for(;;) // ever for(;;) // ever
{ { mutex_lock(&lock);
newltem = produce () ; if(count == 0)
mutex_lock (&lock); sleep();
if (count == MAX_ITEMS)
sleep(); item = remove () ;
count——;
insert (newlItem);
count++; if(count == MAX_ITEMS - 1)
wake_up (producer);
if(count == 1) mutex_unlock (&lock);
wake_up (consumer); consume (item);

mutex_unlock (&lock);

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 10a/33

Another non-Solution with mutex

void producer ()

{

Item newlItem;

void consumer ()

{

Item item;

for(;;) // ever for(;;) // ever
{ { mutex_lock(&lock);
newltem = produce () ; if(count == 0)
mutex_lock (&lock); sleep();
if(count == MAX_ITEMS)
sleep(); item = remove () ;
count——;
insert (newlItem);
count++; if(count == MAX_ITEMS - 1)
wake_up (producer);
if(count == 1) mutex_unlock (&lock);
wake_up (consumer); consume (item);
mutex_unlock (&lock);
} }
} }
m One cannot work while the other sleeps with lock held (deadlock)
Classic Synchronization Problems Deadlocks

Mutual Exclusion
F. Bellosa — Betriebssysteme

Producer-Consumer Problem

Readers-Writers Problem
WT 2016/2017

Dining-Philosophers

10/33

Final non-Solution with mutex

void producer () void consumer ()
{ [...] ¢ [...]
for(;;) // ever for(;;) // ever
{ { mutex_lock(&lock);
newltem = produce () ; if(count == 0)
mutex_lock (&lock); {
if(count == MAX_ITEMS) mutex_unlock (&lock);
{ sleep();
mutex_unlock(&lock); mutex_lock (&lock);
sleep(); }
mutex_lock(&lock);
} item = remove () ;
insert (newItem); count—-;
count++;
if(count == MAX_ITEMS - 1)
if(count == 1) wake_up (producer);
wake_up (consumer); mutex_unlock (&lock);
mutex_unlock (&lock); consume (item);
} }
} }
Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 11a/33

Final non-Solution with mutex

void producer ()
{ [...]
for(;;)

{

// ever

newltem = produce();
mutex_lock (&lock);
if (count == MAX_TITEMS
{
mutex_unlock (&lock
sleep();

mutex_lock(&lock);

)

)i

void consumer ()

¢ [...]

for(;;) // ever
{ mutex_lock(&lock);
if(count == 0)

{
mutex_unlock (&lock
sleep();
mutex_lock (&lock);

)

} item = remove () ;
insert (newItem); count—-;
count++;
if(count == MAX_ITEMS - 1
if(count == 1) wake_up (producer);
wake_up (consumer); mutex_unlock (&lock);
mutex_unlock (&lock); consume (item);
} }
} }
a Still racy and can cause signal loss
Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme

WT 2016/2017

11/33

Condition Variables

a Problem can be solved with a mutex and 2 counting semaphores

m Hard to understand
a Hard to get right
m Hard to transfer to other problems

a Condition Variables (CV) allow blocking until a condition is met

m Condition variables are usually suitable for the same problems but they
are much easier to “get right”

a |dea:
a New operation that performs unlock, sleep, lock atomically
a New wake-up operation that is called with lock held
— Simple mutex lock/unlock around CS + no signal loss

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 12/33

Pthread Condition Variables

Pthread CV call

Description

pthread cond_init

Create and initialize a new CV

pthread_cond_destroy

Destroy and free an existing CV

pthread cond wait

Block waiting for a signal

pthread_cond timedwait

Block waiting for a signal or timer

pthread_cond_signal

Signal another thread to wake up

pthread_cond broadcast

Signal all threads to wake up

Classic Synchronization Problems
Mutual Exclusion Producer-Consumer Problem

F. Bellosa — Betriebssysteme

Deadlocks

Readers-Writers Problem Dining-Philosophers

WT 2016/2017

13/33

Solution with Condition Variables

m Two condition variables: more and less

void producer ()
{

Item newlItem;

for(;;) // ever

{

newltem = produce();

void consumer ()

{

Item item;

for(;;) // ever

{

mutex_lock (&lock);

’

while (count ==)
mutex_lock(&lock); cond_wait (&more, &lock);
while (count == MAX_ITEMS)
cond_wait (&less, &lock); item = remove () ;
count——;
insert (newlItem);
count++; cond_signal(&less);
mutex_unlock (&lock);
cond_signal (&more);
mutex_unlock (&lock); consume (item);
} }
} }
Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers
F. Bellosa — Betriebssysteme WT 2016/2017 14/33

Readers-Writers Problem

m Problem: Model access to shared data structures

a Many threads compete to read or write the same data
m Readers only read the data set; they do not perform any updates
a Writers can both read and write

m Using a single mutex for read and write operations is not a good
solution, as it unnecessarily blocks out multiple readers while no writer
is present

m |dea: Locking should reflect different semantics
for reading data and for writing data
a [f no thread writes, multiple readers may be present
m [f a thread writes, no other readers and writers are allowed

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 15/33

15! Readers-Writers Problem: Readers Preference

@ No reader should have to wait if other readers are already present

void writer ()

{
for(;;) // ever
{

// generate data to write
wait (write_lock);
// write data

signal (write_lock);

m Writers cannot acquire
write_lock until the last reader
leaves the critical section

Classic Synchronization Problems
Mutual Exclusion Producer-Consumer Problem
F. Bellosa — Betriebssysteme

void reader ()
{
for(;;) // ever
{
mutex_lock(&rc_lock);
readerscount++ ;
if (readerscount == 1)
wait (&write_lock);
mutex_unlock (&rc_lock);

// read data

mutex_lock (&rc_lock);

readerscount—-—;

if (readerscount == 0)
signal (&write_lock);

mutex_unlock (&rc_lock);

Deadlocks
Readers-Writers Problem Dining-Philosophers

WT 2016/2017

16/33

29 Readers-Writers Problem: Writers Preference

a No writer shall be kept waiting longer than absolutely necessary

m Code is analogous to 15 readers-writers problem but with separate
readers- and writers-counts

m Read “Concurrent Control with Readers and Writers” by Randell if you
are interested in code for a solution

w 15 and 2" readers-writers problem have the same issue:

m Readers preference — writers can starve
a Writers preference — readers can starve

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 17/33

3" Readers-Writers Problem: Bounded Waiting

a No thread shall starve

m POSIX threads contains readers-writers locks to address this issue

Pthread Mutex call Description

pthread rwlock_init Create and initialize a new RW lock
pthread_rwlock destroy | Destroy and free an existing RW lock
pthread rwlock_rdlock | Block until reader lock acquired
pthread rwlock wrlock | Block until writer lock acquired
pthread_rwlock_unlock Leave critical section

a Multiple readers but only a single writer are let into the CS

a If readers are present while a writer tries to enter the CS then
m don't let further readers in
m block until readers finish
m let writer in

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa — Betriebssysteme WT 2016/2017 18/33

POSIX Readers-Writers Locks

m Readers-writers locks make solving the 3rd readers-writers problem a

non-issue. . .
void writer () void reader ()
{ {
for(;;) // ever for(;;) // ever
{ {
rwlock_wrlock(rw_lock); rwlock_rdlock(rw_lock);
// write data // read data
rwlock_unlock(rw_lock); rwlock_unlock(rw_lock);
} }
} }

® ...unless you have to implement the readers-writers locks

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers
WT 2016/2017 19/33

F. Bellosa — Betriebssysteme

Dining-Philosophers Problem

m Cyclic workflow of 5 philosophers
Think

Get hungry

Grab for one chopstick

Grab for other chopstick

Eat

Put down chopsticks

oakwn =

a Ground rules
a No communication
a No “atomic” grabbing of
both chopsticks
a No wrestling

a Models threads competing for limited number of resources
(e.g., I/O devices)
Classic Synchronization Problems

Mutual Exclusion Producer-Consumer Problem
F. Bellosa — Betriebssysteme

Deadlocks
Readers-Writers Problem Dining-Philosophers

WT 2016/2017 20/33

Dining-Philosophers Problem

m Naive solution with mutex_t chopstick[5] representing the chopsticks
a What happens if all philosophers grab their left chopstick at once?

void philosopher(int 1)
{

for(;;) // ever

{

mutex_lock (chopstick[i]);

mutex_lock (chopstick[(i + 1) % 5]);
// eat

mutex_unlock (chopstick[i]);
mutex_unlock (chopstick[(i + 1) % 5]);
// think

}

@ Deadlock workarounds
a Just 4 philosophers allowed at a table of 5 (example for deadlock avoidance)
a Odd philosophers take left chopstick first, even philosophers take right
chopstick first (example for deadlock prevention)
Classic Synchronization Problems Deadlocks

Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers
F. Bellosa — Betriebssysteme WT 2016/2017 21/33

Deadlocks

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa — Betriebssysteme WT 2016/2017 22/33

Deadlock Conditions

Deadlocks can arise if all four conditions hold simultaneously:

1. Mutual exclusion

a Limited access to resource
a Resource can only be shared with a finite amount of users

2. Hold and wait
a Wait for next resource while already holding at least one

3. No preemption

a Once the resource is granted, it cannot be taken away but only handed back
voluntarily

4. Circular wait
a Possibility of circularity in graph of requests

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa — Betriebssysteme WT 2016/2017 23/33

Example: Deadlock Conditions

Classic Synchronization Problems

Deadlock Conditions Deadlock Prevention Deadlock Avoidance

F. Bellosa — Betriebssysteme

. Only one

intersection

. Cars block part of

the intersection
while waiting for the
rest

. Cars don’t diminish

into thin air

. Every one of the

four sides waits for
the cars that come
from the right to

give way
Deadlocks
Detection Recovery
WT 2016/2017 24/33

Deadlock countermeasures
Three approaches to dealing with deadlocks:

a Prevention
Pro-active, make deadlocks impossible to occur

a Avoidance
Decide on allowed actions based on a-priori knowledge

a Detection
React after deadlock happened (recovery)

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa — Betriebssysteme WT 2016/2017 25/33

Deadlock Prevention
Negate at least one of the required deadlock conditions:

1. Mutual exclusion
a Buy more resources, split into pieces, virtualize — “infinite” # of instances

2. Hold and wait

a Get all resources en-bloque
a 2-phase-locking

3. No preemption
a Virtualize to make preemptable
a virtual vs. physical memory
a spooling (printer)

4. Circular wait
m Ordering of resources
a Prevent deadlocks with partial order on resources!
a E.g., always acquire mutex my before m»

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa — Betriebssysteme WT 2016/2017 26/33

Deadlock Avoidance

a If a system is in safe state RS
— no deadlocks deadlock
m If a system is in unsafe state ﬂ
— deadlocks possible
a DealeCk AVOidance B . ;:rfizﬁter;frocesses
On every resource request: " &
decide if system stays in b
safe state I s \
I
m Needs a-priori information Plotter ; I
(e.g., max resources needed) r s
m Resource Allocation Graph L] N
p q Iy I2 I3 Iy
Printer <=———
—~—— > Plotter
Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa — Betriebssysteme WT 2016/2017 27/33

Resource Allocation Graph (RAG)

m View system state as graph

m Processes are round nodes
m Resources are square nodes

a Every instance of a resource is depicted as a dot in the resource node
. R, R,
m Resource requests and assignments are edges “ “
m Resource pointing to process means:
Resource is assigned to processes

a Process pointing to resource means: e @ Ps
Process is requesting resource

m Process may request resource:

Claim edge, depicted as dotted line \:/ .
(without claim edges only one o
point in time depictable) R, Q
R,
Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa — Betriebssysteme WT 2016/2017 28/33

Deadlock Detection

Allow system to enter deadlock — detection — recovery scheme

® Maintain Wait-For Graph (WFG)
a Nodes are processes
a Edge represents “wait for” relationship (Like RAG, but without resources)

m Periodically invoke an algorithm that searches for a cycle in the graph
a [f there is a cycle, there exists a deadlock

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa — Betriebssysteme WT 2016/2017 29/33

Recovery from Deadlock: Process Termination

a Abort all deadlocked processes

m Abort one process at a time until the deadlock cycle is eliminated

a In which order should we choose to abort?

a Priority of the process

a How long process has computed, and how much longer to completion

m Resources the process has used

m Resources process needs to complete

a How many processes will need to be terminated

m Is process interactive or batch?
Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa — Betriebssysteme WT 2016/2017 30/33

Recovery from Deadlock: Resource Preemption

m Selecting a victim
a Minimize cost

a Rollback
a Perform periodic snapshots
m Abort process to preempt resources
— Restart process from last safe state

m Starvation

m Same process may always be picked as victim
— Include number of rollbacks in cost factor

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa — Betriebssysteme WT 2016/2017 31/33

Summary

a Classical synchronization problems model synchronization problems
that occur in reality

a Producer-Consumer Problem: Shared use of buffers/queues
m Readers-Writers Problem: Shared access to data structures
a Dining Philosophers: Competition for limited resources

m Such synchronization problems occur very often when programming
operating systems

a The parallelism introduced by multiple processors and the concurrency
introduced by multiprogramming needs to be considered carefully when
writing an OS

a Poorly synchronized code can lead to starvation, priority inversion, or
deadlocks

Classic Synchronization Problems Deadlocks

F. Bellosa — Betriebssysteme WT 2016/2017 32/33

Further Reading

a Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition:
m Pages 119-148
m Pages 167-173
a Chapter 6

a Stevens, Rago: Advanced Programing in the UNIX Environment:
a Pages 367-386

Classic Synchronization Problems Deadlocks

F. Bellosa — Betriebssysteme WT 2016/2017 33/33

	08. Practical Synchronization by Example
	Classic Synchronization Problems
	Mutual Exclusion
	Producer-Consumer Problem
	Readers-Writers Problem
	Dining-Philosophers

	Deadlocks
	Deadlock Conditions
	Deadlock Prevention
	Deadlock Avoidance
	Detection
	Recovery

