
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
09. Memory Management Hardware

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu


We studied Processes and Address Spaces before

Processes are a resource container for the OS

The process feels alone in the world
It has its own memory (address space, AS) and only uses virtual addresses
The MMU relocates each load/store to physical memory
Processes never see physical memory and cannot address it directly

The process AS layout is given by the ABI

The layout is divided into sections
Statically allocated data (text, ro-data, data, bss)
Data that follows LIFO semantics (stack)
Data that can be allocated and free’d dynamically (heap)

Virtual Memory Hardware

F. Bellosa – Betriebssysteme WT 2016/2017 2/29



Typical Process Address Space Layout
OS Addresses where the kernel is mapped

(cannot be accessed by process)

Stack Local variables, function call
parameters, return addresses

Heap Dynamically allocated data (malloc)

Data Static, constant, global variables

Text Program, machine code

This week: How to translate between virtual
and physical addresses

Next week: How the OS organizes and
provisions memory for multiple processes

Side note: Physical address translates to “physischer Speicher” (körperlich)
Do not say “physikalischer Speicher” (die Physik betreffend)

Virtual Memory Hardware

F. Bellosa – Betriebssysteme WT 2016/2017 3/29

Reserved for OS

Stack

Heap

Data

Text

0xFFFFFFFF

0x00000000

AS

Read-Only Data

Data

BSS



Memory Managment Hardware
How to translate addresses

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 4/29



Main Memory

Main memory and registers are the only storage that the CPU can
access directly

Program must be brought into memory from background storage and
placed within a process’ address space for it to be run

Early computers had no memory abstraction
Programs accessed physical memory directly

Multiple processes can be run concurrently even without memory
abstraction

Swapping
Static Relocation

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 5/29



Swapping

Swapping denotes
saving a program’s state on
background storage (roll-out)
replacing it with another
program’s state (roll-in)

+ Only needs hardware support to
protect the kernel, but not to
protect processes from one another

– Very slow
Major part of swap time is transfer time
Total transfer time is directly proportional to the amount of memory swapped

– At every point in time only one process runs: no parallelism
This process owns the entire physical address space

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 6/29



Overlays
What if the process you want to run needs more memory than
available?

– Need to partition program manually

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 7/29



Static Relocation

Another possibility to solve address conflicts when
loading multiple processes is static relocation

The OS adds a fixed offset to every address in
a program when loading it and creating
a process from it

Same address space (physical addresses) for every process
No protection: Every program sees and can access every address!
What if gcc needs more memory for its abstract syntax tree?
What if mplayer is pausing playback and currently doesn’t need memory?
Can it be reused by other processes?
What if no contiguous free region fits program?

Want programs to co-exist peacefully.
Need to provide dynamic allocation and mutual protection!

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 8/29

pmem

OS

vim

gcc

mplayer



Desired properties when sharing physical memory

Protection
A bug in one process must not corrupt memory in another
Don’t allow processes to observe other processes’ memory (pgp/ssh-agent)

Transparency
A process shouldn’t require particular physical memory addresses
Processes should be able to use large amounts of contiguous memory

Resource exhaustion
Allow that the sum of sizes of all processes is greater than physical memory

Need protection and (dynamic) relocation

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 9/29



Memory-Management Unit (MMU)

Need hardware support to achieve safe and secure protection
Hardware device maps virtual to physical address
The user program deals with virtual addresses

It never sees the real physical addresses

load

app.

kernel

virtual address
0x30408

MMU

Is address
legal?

Yes, phys. addr
0x92408

memorydata

NoTo fault handler

Next: How does an MMU work?

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 10/29



Base and Limit Registers

Idea: Provide protection and dynamic relocation in the MMU
Introduce special base and limit registers (e.g., Cray-1 did this)

On every load/store the MMU
Checks if the virtual address is larger or equal to base
Checks if the virtual address is smaller than base + limit
Use the virtual address as the physical address in memory

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 11/29



Protecting the Kernel with Base and Limit Registers

Need to protect OS from processes

Main memory split into two partitions
Resident operating system,
usually held in low memory
with interrupt vector

User processes held in
high memory

OS can access all process partitions
e.g., to copy syscall parameters

MMU denies processes access to
OS memory

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 12/29



Base and Limit Registers

+ Straight forward to implement MMU
Only need to load new base and limit registers to switch address space

+ Very quick at run-time
Only two comparisons (can do both in parallel)
Compute base + limit in advance

– How do you grow a process’ address space?

– How do you share code or data?

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 13/29



Segmentation
Possible solution for shortcomings of Base + Limit approach:

Use multiple Base+Limit register pairs per process

Þ Can keep some segments private, share others

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 14/29



Segmentation Architecture

Virtual address consists of a tuple: <segment #, offset>
Can be encoded in the address (PDP-10 – seg #: high bits, offset: low bits)
Can be selected by an instruction or an operand

Each process (address space) has a segment table that maps virtual
address to physical addresses in memory

Base Starting physical address where the segment resides in memory
Limit Length of the segment
Protection Access restriction (read/write) to make safe sharing possible

The MMU has two registers that identify the current address space
Segment-table base register (STBR) points to the segment table location of
the current process
Segment-table length register (STLR) indicates number of segments used
by the process (segment # is legal if it is < STLR)

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 15/29



Segmentation Mechanics

protbaselimit

Segmentation Table

0x0200 0x2000 r

no

Segmentation Fault

STBR
STLR 2

0x0500 0x0000 rw

1 0123vaddr

seg#

0x2000

0x2200
0x2123

< +
yes

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 16/29



Segmentation Trade-offs

+ Makes data/code sharing between processes possible without
compromising confidentiality and safety/security

+ Process doesn’t need large contiguous physical memory area
Þ easier placement

+ Don’t need entire process in memory
Þ Can overcommit memory

– Segments need to be kept contiguous in physical memory

– Fragmentation of physical memory

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 17/29



External Fragmentation

Fragmentation ≡ The inability to use free memory

External Fragmentation Sum of free memory satisfies requested
amount of memory. Contiguous memory required, though.

Can reduce external fragmentation through compaction
Close gaps by moving allocated memory in one direction (e.g., towards 0)
Results in a large free block on the other side
Compaction is possible only if relocation is dynamic, and can be done at
execution time.

vim firefox

gcc ???

vim firefox gcc

– Expensive: Need to halt process while moving data and updating tables.
Need to reload caches afterwards Þ Should be avoided

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 18/29



Paging

Divide physical memory into fixed-sized blocks called page frames
Size is power of 2 Bytes
Typical frame sizes: 4 KiB, 2 MiB, 4 MiB

Divide virtual memory into blocks called pages
Same sizes available as for frames

OS keeps a page table that stores mappings between virtual page
numbers (vpn) and page frame numbers (pfn) for each AS

OS keeps track of all free frames and modifies page tables as needed
To run a program of size n pages, need to find n free frames and load
program

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 19/29



Paging

A Present Bit in the page table
indicates if a virtual page
is currently mapped to
physical memory

MMU reads the page table and
autonomously translates
valid mappings

If a process issues an instruction
to access a virtual address
that is currently not mapped,
the MMU calls the OS to
bring in the data (page fault)

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 20/29



Address Translation Scheme
Virtual address is divided into:

Virtual page number: Index into the
page table which contains base address
of each page in physical memory

Page offset: Concatenated with base address results in physical address

pfn

page table

0x2

no

Page Fault

%cr3

0x0

1 0123vaddr

vpn
0x2000

(0x2<<n) | 0123

? |
yes

valid

0

1

0x1000

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 21/29



Hierarchical Page Table

Problem: For every address space, need to keep complete page table
in memory that can map all virtual page numbers

Idea: Don’t need complete table, most virtual addresses are not used
by process

Again, another level of indirection saves the day:
Subdivide the virtual address further into multiple page table indices pn

forming a hierarchical page table

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 22/29



Intel x86-64 Page Table Hierarchy
x86-64 long mode: 4-level hierarchical page table

Page directory base register (Control Register 3, %CR3) stores the
starting physical address of the first level page table

For every address space, the page-table hierarchy goes as follows
Page map level 4 (PML4)
Page directory pointers table (PDPT)
Page directory (PD)
Page table entry (PTE)

At each level, the respective table can either point to a directory in the
next hierarchy level, or to an entry containing actual mapping data.

Depending on the depth of the entry, the mapping has different sizes
PDPTE: 1 GiB page
PDE: 2 MiB page
PTE: 4 KiB page

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 23/29



Intel x86-64 Page Table Hierarchy

1 GiB Memory

1 GiB Memory

… 512x… 512x

… 512x

2 MiB Memory

2 MiB Memory

… 512x

… 512x

4 KiB Memory

4 KiB Memory

… 512x

PML4

%CR3

PDPTE

PDPT PDE

PD PTE

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 24/29



Page Table Entry Content

Valid Bit: Whether the page is currently available in memory or needs to
be brought in by the OS, via a page-fault, before accessing it
(a.k.a. Present Bit)

Page Frame Number: If the page is present, at which physical address
the page is currently located

Write Bit: If the page may be written to. When a process writes to a
page with a clear write bit, the MMU halts the operation and raises a
page-fault

Caching: If this page should be cached at all and with which policy

Accessed Bit: Set by the MMU if page was touched since the bit was
last cleared by the OS

Dirty Bit: Set by the MMU if this page was modified since the bit was
last cleared by the OS

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 25/29



The OS’s Involvement in Paging

The OS performs all operations that require semantic knowledge:

Page allocation/bringing data into memory
The OS needs to find a free page frame for new pages and set up the
mapping in the page table of the affected address space

Page replacement
When all page frames are in use, the OS needs to evict pages from
memory to make room for new pages
e.g., code sections can be dropped and re-read from disk on their next use
e.g., heap memory has to be saved to a pagefile or swap area before the
frame can be evicted

Context switching
The OS sets the MMU’s base register (%CR3 on x86) to point to the page
hierarchy of the next process’s address space

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 26/29



Internal Fragmentation

Paging eliminates external fragmentation due to its fixed size blocks

With paging, however, internal fragmentation becomes a problem
As memory can only be allocated in course grained page frame sizes
An allocated virtual memory area will generally not end at a page boundary
The unused rest of the last allocated page cannot be used by other
allocations and is lost

vim firefox

gcc

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 27/29



Page Size Trade-Offs

Fragmentation:
Larger pages Þ More memory wasted due to internal fragmentation for
every allocation
Small pages Þ On average only half a page wasted for every allocation

Table size:
Larger pages Þ Fewer bits needed for pfn (more bits in the offset)
Larger pages Þ Fewer PTEs
Smaller pages Þ More and larger PTEs
Note: Page table hierarchies support multiple page sizes with uniform
entries, larger pages need fewer page tables (e.g., x86-64)

I/O:
Larger pages Þ More data needs to be loaded from disk to make page valid
Smaller pages Þ Need to trap to OS more often when loading large
program

Virtual Memory Hardware
Motivation Static Relocation Virtual Memory Base+Limit Segmentation Paging

F. Bellosa – Betriebssysteme WT 2016/2017 28/29



Summary

Need to place process in memory to run

Want to place multiple processes in memory at the same time to run
them concurrently/in parallel

Virtual memory enables protection, transparency, and overcommitting
memory at the cost of adding hardware (MMU) to translate memory
addresses at every load and store

Different MMUs have been invented in the past
Base + Limit
Segmentation
Paging

Paging is supported by all contemporary MMUs
Some also support segmentation (e.g., x86, limited in x86-64)
Most OS’s favor paging over segmentation

Virtual Memory Hardware

F. Bellosa – Betriebssysteme WT 2016/2017 29/29


	09. Memory Management Hardware
	Virtual Memory Hardware
	Motivation
	Static Relocation
	Virtual Memory
	Base+Limit
	Segmentation
	Paging



