
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
11. Caching

Prof. Dr.-Ing. Frank Bellosa |WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu


Where we ended last lecture
Page tables communicate between OS and MMU hardware

How virtual addresses in each address space translate to physical
addresses
On which kind of accesses the MMU should signal the OS
(e.g., write to read-only pages)

Performing page table lookups for every memory access significantly
slows down the execution of programs

The translation lookaside buffer (TLB) caches page table lookups that have
previously been performed to speed up the memory translation process
Typical TLBs cover 95%–99% of all translations

Caching

F. Bellosa – Betriebssysteme WT 2016/2017 2/30



Effective Access Time
Associative lookup takes τ time units

e.g., τ = 1 ns

A memory cycle takes µ time units
e.g., µ = 100 ns

TLB hit ratio α

Percentage of all memory accesses whose translation is already cached in
the TLB
e.g., α = 99%

Effective Access Time (EAT) for linear page table without cache

EAT = (τ + µ) · α+ (τ + 2 · µ) · (1− α) = τ + 2 · µ− µ · α

How do caches work and how quick are memory references in
reality?

Caching

F. Bellosa – Betriebssysteme WT 2016/2017 3/30



Caching

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 4/30



¿

Managing Memory

Memory (RAM) needs to be managed carefully
Programs expand to fill the memory available to hold them

Ideal memory properties
Large
Fast
Nonvolatile
Cheap

Real memory: Trade off properties above
Tape/Disk = Large + Slow + Cheap + Nonvolatile
SSD = Not too large + Not too cheap + Nonvolatile
RAM = Fast + volatile + expensive
SRAM, Registers = Very fast + volatile + very expensive
. . .

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 5/30



CPU-Cache Location

CPU Cache
Main

Memory

Address

Data

Address

Data

Buffer memory for exploiting temporal and spatial locality

Low latency, high bandwidth

Reduction of main memory accesses

Reduction of memory bus traffic (important for multiprocessor systems)

Buffer for asynchronous prefetch operations

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 6/30



Types of Cache Misses

Compulsory miss
Cold start, first reference
Data block was not cached before

Capacity miss
Not all required data fits into the cache
Accessed data was previously evicted to make room for different data

Conflict miss
Collision, interference
Depending on the cache organization, data items interfere with each other
Fully associative caches are not prone to conflict misses

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 7/30



Harvard Architecture

Separate buffer memory for data and instructions

CPU

Data
Cache

Instruct.
Cache

Main
Memory

Data
Address

Instruction
address

Data

Instructions

Data
Address

Instruction
address

Data

Instructions

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 8/30



Write and Replacement Policies

Cache hit
Write-through

Main memory is always up-to-date
Writes may be slow

Write-back
Data is written only to the cache
Main memory temporarily inconsistent

Cache miss
Write-allocate:

To-be-written data item is read from main memory into the cache
Write performed afterwards according to the write policy

Write-to-memory:
Modification is performed only in main memory

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 9/30



Cache Organization: Direct Mapped Cache

Cache-lines with fixed length (e.g., 32/64 Bytes)
Mapping from address to cache lines
Data identified by tag-field

Address

Hash Function

Index

Line Tag Data

Data

0
1
2
3
4
5

8192

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 10/30



Cache Organization: Set Associative Cache

Example: 2-way set associative cache

Address

Hash Function

Index

Tag Data

Data

0

1

2

4096
S

et

Line

0
1
0
1
0
1

0
1

If #sets == #lines Þ Direct Mapped Cache
If #sets == 1 Þ Fully Associative Cache

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 11/30



Hash Functions

Modulo hashing: e.g., bits 0 to 5 as byte-offset within a cache line,
bits 6 to 18 to select a cache line, bits 19 to 31 as tag.
Arbitrary cut-out of address to select cache line, e.g. bits 10 to 22.
Suboptimal mapping of addresses to cache lines and therefore not
used.

Cache

0

512k

512k

1024k
} }

0 }

1536k
}

2048k
}

2560k
}

Cache

Address Space

1k

2k
}

0 }

3k
}

4k
}

5k
}

Address
31 18 6 5 0

Address
31 5 022 10

Address Space

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 12/30



Cache Design Parameters

Size and set size
Small cache Þ set-associative implementation with large sets

Line length
Spatial locality Þ long cache lines

Write policy
Temporal locality Þ write-back

Replacement policy

Using virtual or physical addresses for tagging/indexing

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 13/30



Long Cache Lines vs. Cache Alignment

Cache line length influences what a good size for data structures is

Problem: Multiple misses caused by “non-aligned” data structures
spanning multiple cache lines

Solution: Padding of structures to a multiple of line length

Entry 0 Entry 1
Entry 2

Entry 3 Entry 4
Entry 5

Entry 6 Entry 7

Row

0
1
2
3
4

Entry 0

Row

0
1
2
3
4

Entry 1
Entry 2
Entry 3
Entry 4

unused
unused
unused
unused
unused

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 14/30



Virtually Indexed, Virtually Tagged (ARMv4/v5)

CPU

Virtual
Address

Data

MMU

Main
Memory

Virtual
Cache

Physical
Address

Virtual
Address

Data

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 15/30



Ambiguity Problem
Identical virtual addresses point to different physical addresses at
different points in time.

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 16/30

0x0000 1234
Physical
Memory

0x5000 5678

Virtual
Address

Maps to

Physical
Address

Virtual
Cache

Tag Data

Time 1:

0x1000
0x1000 5678

0x5000

•••

•••

Virtual
Address

Maps to

Physical
Address

Virtual
Cache

Tag Data

Time 2:

0x1000
0x1000 5678

0x0000

•••

•••



Alias Problem
Different virtual addresses point to the same physical memory location

Virtual
Address Space

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000

}

}

}

Physical
Adress Space

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000

Virtual
Cache

Tag Data

0x2000 1234

••
•

•
••

0x4000 1234
••
•

After references to
0x2000 and 0x4000

After modification
of 0x2000

Virtual
Cache

Tag Data

0x2000 5678

••
•

•
••

0x4000 1234
••
•

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 17/30



Virtually Indexed, Virtually Tagged Cache Operations

Context switch: Cache must be invalidated (and written back if
write-back is used), as identical virtual addresses of different address
spaces might (likely) reference different physical addresses

fork: The child needs a complete copy of the parent’s address space.
If copy operation runs in the context of the parent, special cache
management is required.

exec: Invalidate cache to prevent ambiguities. Not necessary to write
content back, as memory is overwritten anyway.

exit: Flush cache

brk/sbrk: Growing requires no action, shrinking requires (selective)
cache invalidations

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 18/30



Virtually Indexed, Virtually Tagged Cache Operations

Shared memory and memory mapped files Þ alias problem
(multiple virtual address refer to the same physical memory)

Disallow

Do not cache

Only allow addresses that map to the same cache line
(if cache is direct-mapped and uses write-allocate)

Each frame accessible from exactly one virtual address at each point in
time (requires invalidation of all alias pages in the page table)

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 19/30



Virtually Indexed, Virtually Tagged I/O

Buffered I/O
No problems

Unbuffered I/O
Write: Information might still be in the cache Þ write back before I/O starts
Read: Cache must be invalidated

CPU

Virtual

Address

Data

MMU

Main
Memory

Virtual

Cache

Physical

Address

Virtual

Address

Data

I/O

Physical

Address

Data

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 20/30



Virtually Indexed, Virtually Tagged: Unbuffered I/O

Additional problems if I/O region is not aligned with length of cache line

buf (first 12 bytes)

a (4 Bytes) buf (20 Bytes) b (4 Bytes) c (4 Bytes)
0 4 24 28

Cache
Line Cache

a

buf (last 8 bytes) b c

0

1

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 21/30



Virtually Indexed, Physically Tagged (ARMv6/v7)

CPU

Virtual
Address

Data

MMU

Main
Memory

Virtual

Physical
Address

Data

Cache
with

physical
Tags

Often used as first-level caches
e.g., UltraSPARC II: 16 kB direct mapped

Cache management in VIPT caches
No ambiguities
No cache flush on context switch
Shared memory/memory mapped files:
Virtual starting addresses must be mapped to the same cache line
I/O: Cache flush required as with virtually indexed, virtually tagged cache

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 22/30



VIPT Conflicts

Data structures whose address distance is a multiple of the cache size
are mapped to the same cache line

Cache

0

Address
Space

512k

1024k
} }

0 }

1536k
}

2048k
}

2560k
}

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 23/30



VIPT Runtime Properties

Cache flush can be avoided most of the time
Fast context switches, interrupt-handling and system calls

Deferred write-back after context switch
Þ Avoids write accesses (performance gain)
Þ Variable execution time caused by compulsory misses

(depends on access pattern of previous thread)

Variable execution time in case of dynamic memory management
caused by conflict misses

Variable search time caused by address translation in MMU

Problematic in multiprocessor systems with shared memory:
Which line to invalidate?

Cache size is a small multiple of page size (factor 1-4)
Requires to only invalidate/flush 1-4 cache lines by cache coherency HW

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 24/30



Physically Indexed Physically Tagged Caches

CPU

Virtual
Address

Data

MMU

Main
Memory

Physical

Physical
Address

Data

Physical
Address

Cache

+ Completely transparent to processor

+ No performance-critical system support required (including I/O)

+ SMPs with shared memory can use coherency protocol implemented in
hardware

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 25/30



PIPT Random Allocation Conflicts

Page conflicts caused by random allocation of physical memory

Virtual Address Space Physical Address Space

ROM

RAM

Frames

Pages

Cache

Contiguous virtual memory is normally mapped to arbitrary free
physical pages

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 26/30



PIPT Random Coloring Conflicts
Consequences of random page coloring:

Cache Conflicts
Cache only partially used
Significant variations in runtime
The probability X that we have p pages mapped to the same cache bin
when allocating P pages on a cache with C colors is:

X(p ∈ bin) =
(P

p

) (
1
C

)p (
1− 1

C

)P−p

50 100 150 200 2500

5

10

15

20

ad
di

tio
na

l p
ag

e 
co

nf
lic

ts

64 pages ≈ cache size

 

working-set size in pages

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 27/30



PIPT Conflict Mitigation

Sequential page colors for individual memory segments
E.g., red-yellow-green-blue-red-yellow . . .

Cache partitioning
Divide physical memory in disjoint subsets.
All pages of a subset are mapped to the same cache partition

Example:
All red and blue pages for operating system
All yellow pages for “the” real-time application
All green pages for background processes

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 28/30



PIPT Conflict Mitigation: Page Recoloring

Analysis of access pattern and page-recoloring

Physical MemoryDirect Mapped
Cache

Direct Mapped
Cache

With RecoloringWithout Recoloring

Caching
Intro Virtual Caches Physical Caches

F. Bellosa – Betriebssysteme WT 2016/2017 29/30



Further Reading

Schimmel, “UNIX Systems for Modern Architectures”

Liedtke, “OS-Controlled Cache Predictability for Real-Time Systems”

Caching

F. Bellosa – Betriebssysteme WT 2016/2017 30/30


	11. Caching
	Caching
	Intro
	Virtual Caches
	Physical Caches



