
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
13. Page Replacement Policies

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu


Page Fault Handling

Access to page that is currently
not present in main memory
causes page fault
(exception that invokes OS)

1 OS checks validity of access
(requires additional info)

2 Get empty frame

3 Load contents of requested page from disk into frame

4 Adapt page table

5 Set valid-invalid bit of respective entry to valid

6 Restart instruction that caused the page fault

Today: How to pick/make an empty frame

Page Replacement Policies

F. Bellosa – Betriebssysteme WT 2016/2017 2/17



Page Replacement Policies
How to find a page to evict from memory

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 3/17



Naı̈ve Page Replacement
Save/clear victim page

Drop page if fetched from disk (e.g., code) and clean (PTE dirty bit)
Write back modifications if from disk and dirty (unless MAP COPY)
Write pagefile/swap partition otherwise (e.g., stack, heap memory)

Unmap page from old AS
Invalidate PTE + flush caches

Prepare the new page
e.g., NULL page
e.g., load new contents

Map the page frame into
the new address space(s)

Invalidate PTE + flush caches

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 4a/17



Naı̈ve Page Replacement
Save/clear victim page

Drop page if fetched from disk (e.g., code) and clean (PTE dirty bit)
Write back modifications if from disk and dirty (unless MAP COPY)
Write pagefile/swap partition otherwise (e.g., stack, heap memory)

Unmap page from old AS
Invalidate PTE + flush caches

Prepare the new page
e.g., NULL page
e.g., load new contents

Map the page frame into
the new address space(s)

Invalidate PTE + flush caches

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 4b/17



Naı̈ve Page Replacement
Save/clear victim page

Drop page if fetched from disk (e.g., code) and clean (PTE dirty bit)
Write back modifications if from disk and dirty (unless MAP COPY)
Write pagefile/swap partition otherwise (e.g., stack, heap memory)

Unmap page from old AS
Invalidate PTE + flush caches

Prepare the new page
e.g., NULL page
e.g., load new contents

Map the page frame into
the new address space(s)

Invalidate PTE + flush caches

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 4c/17



Naı̈ve Page Replacement
Save/clear victim page

Drop page if fetched from disk (e.g., code) and clean (PTE dirty bit)
Write back modifications if from disk and dirty (unless MAP COPY)
Write pagefile/swap partition otherwise (e.g., stack, heap memory)

Unmap page from old AS
Invalidate PTE + flush caches

Prepare the new page
e.g., NULL page
e.g., load new contents

Map the page frame into
the new address space(s)

Invalidate PTE + flush caches

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 4/17



Page Buffering

Problem: Naı̈ve page replacement encompasses two I/O transfers
swapping out (demand cleaning) and swapping the new page in

Both operations block the page fault from completing

Goal: Reduce I/O from critical page fault path to speed up page faults

Idea: Keep pool of free page frames (pre-cleaning)
On a page fault, use a page frame from the free pool
Run a daemon that cleans (write back changes), reclaims (unmap), and
scrubs (zero out) pages for the free pool in the background

Such a free pool smoothes out I/O and speeds up paging significantly

Remaining problem: Which pages to select as victims?
Goal: Identify a page that has left the working set of its process to add it to
the free pool
Success metric: Low overall page fault rate

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 5/17



First-In-First-Out (FIFO) Page Replacement

Evict the oldest fetched page in the system

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 6/17



Intuition: Page Fault Rate vs. Number of Frames

Intuitively one would say that the page fault rate decreases when the
amount of memory increases
This is true most of the time, but not universally

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 7/17



Belady’s Anomaly

Reference string for all our examples: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Belady’s Anomaly
When using FIFO page replacement, for every number N of page frames
you can construct a reference string that performs worse with N+1 frames

Þ With FIFO it is possible to get more page faults with more page frames

3 frames

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

4 frames

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 8/17



Belady’s Anomaly using FIFO page replacement

More physical memory doesn’t always imply fewer faults

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 9/17



Oracle: Optimal Page Replacement

The optimal page replacement strategy is to replace the page whose
next reference is furthest in the future

Example with 4 frames:
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Cannot predict the future
Not suitable in practice
However: Good metric to check how well other algorithms perform

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 10/17

1

2

3

4

6 page faults

4 5



Least Recently Used (LRU) Page Replacement

Goal: Approximate Oracle page replacement

Idea: Past often predicts the future well

Assumption: Page used furthest in past is used furthest in the future

Reference string
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
8 page faults

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 11/17

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3



LRU: Easy to understand, hard to implement well

Cycle counter implementation
Have MMU write CPU’s time stamp counter to PTE on every access
On a page fault: Scan all PTEs to find oldest counter value

+ Cheap at access if done in HW
– Memory traffic for scanning

Stack implementation
Keep a doubly linked list of all page frames
Move each referenced page to tail of list

+ Can find replacement victim in O(1)
– Need to change 6 pointers at every access

No silver bullet
Observation: Predicting the future based on the past is not precise
Conclusion: Relax requirements – maybe perfect LRU is not needed?
Þ Approximate LRU

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 12/17



LRU Approximation: Clock Page Replacement

Clock page replacement is a.k.a. second chance page replacement

Precondition: MMU sets reference bit in PTE
Supported natively by most hardware (e.g., IA-32, x86-64, . . . )
Can easily emulate in systems with software managed TLB (e.g., MIPS)

Keep all pages in circular FIFO list

When searching for a victim scan pages in FIFO’s order
If reference bit is 0 Þ use page as victim and advance hand1

If reference bit is 1 Þ set to 0 and continue scanning

Large memory Þ most pages referenced before scanned
Use 2 arms: Leading arm clears reference bit, trailing arm selects victim

1Reference bit will be set by hardware after page fault when retrying access
Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 13/17



Clock Page Replacement

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 14/17



Other replacement strategies

Random eviction
Just pick a victim at random
Dirt simple and in reality not overly horrible

Use larger counter: Use n-Bit reference counter instead of reference bit
Least frequently used (LFU)

Idea: Rarely used page is not in a working set
Þ Replace page with smallest count

Most frequently used (MFU)
Idea: The page with the smallest count was probably just brought in and will be
used soon

Þ Replace page with the largest count

Neither LFU nor MFU are common (no such hardware + not that great)

Page Replacement Policies
Page Buffering FIFO Oracle LRU Clock

F. Bellosa – Betriebssysteme WT 2016/2017 15/17



Summary

When handling page faults, the OS needs to select a victim page frame
for eviction

Evicting a page frame after the page fault happens is not a good idea
Page buffering keeps the eviction out of the critical path

Different victim selection policies have been implemented in the past
FIFO Þ Belady’s Anomaly
Oracle Þ Cannot predict the future
Random Þ Unpredictable, never great but rarely very bad
LRU Þ Hard to implement efficiently

LRU works “OK”, but need to approximate to lower overhead
Clock
2-armed clock

Page Replacement Policies

F. Bellosa – Betriebssysteme WT 2016/2017 16/17



Further Reading

Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition:
Pages 209–222

Page Replacement Policies

F. Bellosa – Betriebssysteme WT 2016/2017 17/17


	13. Page Replacement Policies
	Page Replacement Policies
	Page Buffering
	FIFO
	Oracle
	LRU
	Clock



