
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
14. Memory Allocation

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu


Dynamic Memory Allocation

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 2/22



Dynamic Memory Allocation

Dynamic Memory Allocation: Allocate and free memory chunks of
“arbitrary size” at arbitrary points in time

Almost every program uses it (heap)
Don’t have to statically specify complex data structures
Can have data grow as a function of input size
Kernel itself uses dynamic memory allocation for its data structures!

Implementation of dynamic memory has huge impact on performance
Both in user space and in kernel

Proven fact: It is impossible to construct a memory allocator that always
performs well

“For any possible allocation algorithm, there exists a stream of allocation
and deallocation requests that defeat the allocator and force it into severe
fragmentation” (Robson)
Need to understand the trade-offs to pick a good allocation strategy

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 3/22



What does a Dynamic Memory Allocator do?

Initially has a pool of free memory

Needs to satisfy arbitrary allocate and free requests from that pool

Needs to track which parts are in use and which parts are free

Cannot control the order or the number of requests

Cannot move allocated regions (no compaction!)
Relocation is not possible (e.g., within a virtual AS)
Bad placement decision is permanent!

Þ Fragmentation is a core problem

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 4/22



Bitmap

Divide memory in allocation units of fixed size

Use a bitmap to keep track if allocated (1) or free (0)

Needs additional data structure to store allocation length
Otherwise cannot infer whether two adjacent allocations belong together or
not from bitmap, but need this info for free. (e.g., try freeing address 8)

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 5/22



List
Either: Use one list-node for each allocated area

Needs extra space for the list
Allocation lengths already stored

Or: Use one list-node for each unallocated area
Can keep list in the unallocated area (e.g., store size of free area and
pointer to next free area in the free area itself)
Needs additional data structure to store allocation lengths
Can search for free space with low overhead

Or: Both

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 6/22



Why is Dynamic Memory Allocation Hard?

Fragmentation is hard to handle (recall lecture 9)
Fragmentation: Inability to use free memory
External fragmentation: Sum of free space is sufficient but cannot allocate
sufficiently large contiguous block of free memory
Internal fragmentation: Overallocate resource requests to align memory
blocks. Don’t have free blocks left although there is sufficient unused
memory within the blocks.

Three factors required for fragmentation to occur
Different lifetimes (symmetric allocation times: no problem Þ stack)
Different sizes (same size: no problem Þ next allocation fits into any hole)
Inability to relocate previous allocations

All three are present in dynamic memory allocators

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 7/22



A Pathological Allocation Example

Say an application allocated all memory in 32-byte chunks

It then releases every other allocation

If it now wants to allocate 33-bytes:
The resource request fails. . .
. . . although half of the memory is free

32 32 32 32

32 32 33

Required “gross” memory in bad allocator: M · nmax
nmin

M = bytes of live data
nmin = smallest allocation, nmax = largest allocation
use maximum size for any size

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 8/22



Best Fit vs. Worst Fit

Idea: Keep large free memory chunks together for larger allocation
requests that may arrive later

Best-fit: Allocate the smallest free block that is large enough to store the
allocation request

Must search entire list, unless ordered by size
During free: coalesce adjacent blocks

Problem: Sawdust
Remainder so small that over time left with unusable sawdust everywhere

Idea: Minimize sawdust by turning the strategy around

Worst-fit: Allocate the largest free block
Must also search entire list, unless ordered by size

In reality: Worse fragmentation than best-fit

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 9/22



First Fit

Idea: If you produce fragmentation with best fit and worst fit alike, try to
optimize for allocation speed

First-fit: Allocate the first hole that is big enough
Fastest allocation policy
Produces leftover holes of variable size

Pathological case: Mix short lived 2n-byte allocations with long-lived
(n+1)-byte allocations

Each time a large object is freed, a small chunk will be quickly taken,
leaving a useless fragment

In reality: Almost as good as best-fit

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 10/22



First Fit Nuances
First-fit sorted by address order:

Blocks at front preferentially split, one at back only split when no larger one
found before them
Seems to roughly sort free list by size
Similar to best fit
Sorting of list forces a large request to skip over many small blocks

LIFO First-fit: Put object on front of list
Cheap & fast allocation policy
Hope same size used again (good cache locality)

Next fit: Use First-fit, but remember where we found the last thing and
start searching from there

Tends to break down entire list
Bad cache locality

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 11/22



Buddy Allocator

Can be used to dynamically allocate contiguous chunks of fixed-size
segments

e.g., Used in Linux kernel to allocate physical memory

Allocates memory in powers of 2
All contiguous allocated/free memory chunks have fixed power-of-2 size
Request rounded up to next-higher power of 2
All chunks are naturally aligned
(i.e., their starting address is a multiple of their size)

If no sufficiently small memory block is available
Select larger available chunk and split it into two equal-sized “buddies”
Continue until appropriately sized chunk is available

If two buddies are both free
Merge buddies to larger chunk encompassing both buddies

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 12/22



Buddy System (2)

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 13/22



Known patterns of real programs

So far we’ve treated programs as black boxes.
Most real programs exhibit 1 or 2 (or all 3) of the following patterns of
alloc/dealloc:

Ramps: accumulate data monotonically over time

Peaks: allocate many objects, use briefly, then free all

Plateaus: allocate many objects, use for a long time

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 14/22



Pattern 1: Ramps

In a practical sense: ramp = no free!
Implication for fragmentation?
What happens if you evaluate allocator with ramp programs only?

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 15/22



Pattern 2: Peaks

Peaks: allocate many objects, use briefly, then free all
Fragmentation a real danger
What happens if peak allocated from contiguous memory?
Interleave peak & ramp? Interleave two different peaks?

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 16/22



Exploiting Peaks

Peak phases: alloc a lot, then free everything
So have new allocation interface: alloc as before, but only support free of
everything
Called “arena allocation”, “obstack” (object stack), or alloca/procedure
call (by compiler people)

Arena = a linked list of large chunks of memory
Advantages: alloc is a pointer increment, free is “free”
No wasted space for tags or list pointers

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 17/22



Pattern 3: Plateau

Peaks: allocate many objects for a long time
What happens if overlap with peak or different plateu

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 18/22



Known patterns of real programs

Segregation = reduced fragmentation:
Allocated at same time ∼ freed at same time
Different type ∼ freed at different time

Implementation observations:
Programs allocate small number of different sizes
Fragmentation at peak use more important than at low
Most allocations small (< 10 words)

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 19/22



SLAB Allocator

Kernel often allocates/frees memory for few, specific data objects of
fixed size

A slab is made up of multiple
pages of contiguous
physical memory

A cache consists of one or
multiple slabs

Each cache stores only one
kind of object
(fixed size)

Linux uses Buddy Allocator as
underlying allocator for slabs

Dynamic Memory Allocation
Motivation Data Structures Fragmentation Basic Strategies Buddy Allocator Allocation Patterns Slab Allocator

F. Bellosa – Betriebssysteme WT 2016/2017 20/22



Summary

Dynamic memory means allocating and freeing memory chunks of
different sizes at any time

It is impossible to construct a memory allocator that always performs
well

The main problem of dynamic memory allocators is fragmentation

Typical dynamic memory data structures are bitmaps and free-lists

Simple allocation strategies that perform reasonably well are:
best-fit and first-fit

More advanced strategies are the buddy- and slab allocator that are
used in the Linux kernel to allocate page frames and in-kernel data
structures

Dynamic Memory Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 21/22



Further Reading

Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition:
Pages 190–194
Pages 761–763

Dynamic Memory Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 22/22


	14. Memory Allocation
	Dynamic Memory Allocation
	Motivation
	Data Structures
	Fragmentation
	Basic Strategies
	Buddy Allocator
	Allocation Patterns
	Slab Allocator



