

Betriebssysteme

15. Secondary-Storage Structure

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) - OPERATING SYSTEMS GROUP

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Secondary-Storage Structure

- Hard disk drives
- Solid state drive
- RAID structure
- Tertiary storage devices

Performance Levels of Storage

Implicit/explicit movements between levels of storage hierarchy

Level	1	2	3	4
Name	registers	cache	main memo-	disk storage
			ry	
Typical size	< 1KB	< 64 MB	< 64 GB	> 100 GB
Implementation	custom me-	on-/off-	DRAM	FLASH
technology	mory multiport	chip CMOS	PRAM STT-	magnetic
	CMOS	SRAM	RAM	disk
Access time	0.25 - 0.5	0.5 - 25	80 - 250	5000
(ns)				5.000.000
Bandwidth	20.000 -	5000 -	1000 - 5000	20 - 150
(MB/sec)	100.000	10.000		
Managed by	compiler (ope-	hardware	operating	operating
	rating system)	(operating	system	system
		system)		
Backed by	cache	main memo-	disk	DVD/tape
		ry		

Anatomy of Hard Disk Drives

- Stack of magnetic platters
 - Rotate together on a central spindle @3,600-15,000 RPM
 - Drive speed drifts slowly over time
 - Can't predict rotational position after 100-200 revolutions
- Disk arm assembly
 - Arms rotate around pivot, all move together
 - Pivot offers some resistance to linear shocks
 - Arms contain disk heads—one for each recording surface
 - Heads read and write data to platters

Hard Disk Drive

Tertiary Storage Devices Solid State Disks

F. Bellosa - Betriebssysteme

Storage on a Magnetic Platter

- Platters divided into concentric tracks
- A stack of tracks of fixed radius is a cylinder
- Heads record and sense data along cylinders
 - Significant fractions of encoded stream for error correction
- Generally only one head active at a time
 - Disks usually have one set of read-write circuitry
 - Must worry about cross-talk between channels
 - Hard to keep multiple heads exactly aligned
- Access time has two major components
 - Seek time is the time for the disk to move the heads to the cylinder containing the desired sector
 - Rotational delay is the additional time waiting for the disk to rotate the desired sector to the disk head

Cylinder, Tracks, Sectors

F. Bellosa - Betriebssysteme

Overview

Disk Positioning System

- Move head to specific track and keep it there
 - Resist physical shocks, imperfect tracks, etc.
- A seek consists of up to four phases:
 - speedup- accelerate arm to max speed or half way point
 - coast-at max speed (for long seeks)
 - slowdown-stops arm near destination
 - settle- adjusts head to actual desired track
- Very short seeks dominated by settle time (~1 ms)
- Short (200-400 cyl.) seeks dominated by speedup
 - Accelerations of 40g

F. Bellosa - Betriebssysteme

Seek Details

- Head switches comparable to short seeks
 - May also require head adjustment
 - Settles take longer for writes than for reads
 - If read strays from track, catch error with checksum, retry
 - If write strays, you've just clobbered some other track
- Disk keeps table of pivot motor power
 - Maps seek distance to power and time
 - Disk interpolates over entries in table
 - Table set by periodic "thermal recalibration"
 - But, e.g., ~500 ms recalibration every ~25 min bad for audio-/video-streaming
- "Average seek time" quoted can be many things
 - Time to seek 1/3 disk, 1/3 time to seek whole disk

Sectors

- Disk interface presents linear array of sectors (LBA)
 - Generally 512 bytes, written atomically (even if power failure)
- Disk maps logical sector #s to physical sectors (CHS)
 - Zoning-puts more sectors on longer tracks
 - Track skewing-sector 0 pos. varies by track
 - Improve sequential access speed
 - Sparing–flawed sectors remapped elsewhere
- OS doesn't know logical (LBA) to physical sector (CHS) mapping
 - Larger logical sector # difference means larger seek
 - Highly non-linear relationship, and depends on zone
 - OS has no info on rotational positions
 - Can empirically build table to estimate times

Disk Interface

- Controls hardware, mediates access
- Computer, disk often connected by bus (e.g., SCSI)
 - Multiple devices may content for bus
- Disk/interface features
 - Disconnect from bus during requests
 - Command queuing: Give disk multiple requests
 - Disk can schedule them using rotational information
 - Read-ahead into disk cache
 - Caching tracks to speed up sequential reads
 - Otherwise next block has to wait for a whole revolution
 - Write caching
 - But data not stable— not suitable for all requests

WT 2016/2017

F. Bellosa - Betriebssysteme

Disk Performance

- Placement & ordering of requests is a huge issue
 - Sequential I/O much, much faster than random
 - Long seeks much slower than short ones
 - Power might fail any time, leaving inconsistent state
- Must be careful about order to allow crash recovery
- Try to achieve contiguous accesses where possible
 - E.g., make big chunks of individual files contiguous
- Try to order requests to minimize seek times
 - OS can only do this if it has multiple requests to order
 - Requires disk I/O concurrency
 - High-performance apps try to maximize I/O concurrency

SSD: Principles of Operation

- Today, people are increasingly using flash memory
- Completely solid state (no moving parts)
 - Remembers data by storing charge
 - Lower power consumption and heat
 - No mechanical seek times to worry about
- Limited # overwrites
 - Blocks wear out after 10,000 (MLC) 100,000 (SLC) erases
 - Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to logical block don't wear out physical block
 - FTL can seriously impact performance
 - In particular, random writes are very expensive
- Limited durability
 - Charge wears out over time
 - Turn off device for a year, you can easily lose data

Types of Flash Memory

- NAND flash (most prevalent for storage)
 - Higher density (most used for storage)
 - Faster erase and write
 - More errors internally, so need error correction
- NOR flash
 - Faster reads in smaller data units
 - Can execute code straight out of NOR flash
 - Significantly slower erases
- Single-level cell (SLC) vs. Multi-level cell (MLC)
 - MLC encodes multiple bits in voltage level
 - MLC slower to write than SLC

F. Bellosa - Betriebssysteme

NAND Flash Overview (typical device)

- Flash device has 2112-byte pages
 - 2048 bytes of data + 64 bytes metadata & ECC
- Blocks contain 64 (SLC) or 128 (MLC) pages
- Blocks divided into 2–4 planes
 - All planes contend for same package pins
 - But can access their blocks in parallel to overlap latencies
- Can read one page at a time
 - Takes 25 μs + time to get data off chip
- Must erase whole block before programming
 - Erase sets all bits to 1—very expensive (2 msec)
 - Programming pre-erased block requires moving data to internal buffer, then 200 (SLC)– 800 (MLC) μs

F. Bellosa - Betriebssysteme

Flash Package

F. Bellosa - Betriebssysteme

SSD Performance Optimization

Spare block

- The SSD controller always keeps a set of erased spare blocks
- On a SSD block re-write the spare SSD-block is used for writing; the old SSD block is marked for erasure
- Erasure takes place in background, if SSD device is idle
- → SSD can tolerate the moderate modification rate without erase penalty
- trim Command
 - The operating system tells the SSD controller about deleted (unused) logical blocks
 - → Unused logical blocks don't have to be copied in case of a SSD block re-write (avoids Write Amplification)
 - → Unused logical blocks increase the pool of spare SSD blocks after garbage collection

Flash Characteristics

(see Gordon: Using Flash Memory to Build Fast, Power-efficient Clusters for Data-intensive Applications, Caulfield et al., APLOS 2009)

Parameter	SLC	MLC	
Density Per Die (GB)	4	8	
Page Size (Bytes)	2048+32	2048+64	
Block Size (Pages)	64	128	
Read Latency (µs)	25	25	
Write Latency (μs)	200	800	
Erase Latency (μs)	2000	2000	
40MHz Read b/w (MB/s)	75.8	75.8	
Program b/w (MB/s)	20.1	5.0	
133MHz Read b/w (MB/s)	126.4	126.4	
Program b/w (MB/s)	20.1	5.0	

F. Bellosa – Betriebssysteme

Improvements for Disk-I/O

Analysis:

data rate of a disk \ll data rate of CPU or RAM

- Idea:
 - Use multiple disks to parallelize disk-I/O
 - Provide a better disk availability
 - Instead of 1 single large expensive disk (SLED) use

⇒ RAID = redundant array of independent disks (originally: redundant array of *inexpensive* disks)

RAID (Redundant Array of Inexpensive Disks)

- Multiple disk drives provide high storage volume and performance with improved reliability compared to a large expensive disk (SLED)
- RAID schemes improve performance and reliability of the storage system by storing redundant data.
 - *Mirroring or shadowing* keeps duplicate of each disk.
 - (*Bit-/Byte-/Block-*)) interleaved parity used much less redundancy.
- Disk stripping uses a group of disks as one storage unit.
- RAID is arranged into six different levels.

RAID levels

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.

RAID Overview Disks **BAID 1** RAID 2 RAID 4

Tertiary Storage Devices RAID (0+1) and (1+0)

F. Bellosa - Betriebssysteme

RAID 0

WT 2016/2017

22/35

RAID 0 (without any redundancy)

Decreased availability compared to the SLED

Increased bandwidth to/from logical disk

 Overview
 Disks
 RAID
 Tertiary Storage Devices

 RAID 0
 RAID 1
 RAID 2
 RAID 3
 RAID 4
 RAID 5
 RAID (0+1) and (1+0)

 F. Bellosa – Betriebssysteme
 WT 2016/2017
 23/35

RAID 1 (mirrored)

 Overview
 Disks
 RAID
 Tertiary Storage Devices

 RAID 0
 RAID 1
 RAID 2
 RAID 3
 RAID 4
 RAID 5
 RAID (0+1) and (1+0)

 F. Bellosa – Betriebssysteme
 WT 2016/2017
 24/35

RAID 2 (redundancy through Hamming Code)

RAID 2 is an overkill and rarely implemented. Hamming code used for f(b), b are very small strips, still a remarkable disk overhead compared to RAID 0.

Overview		Disks		RAID		Tertiary Storage I	Devices
RAID 0	RAID 1	RAID 2	RAID 3	RAID 4	RAID 5	RAID (0+1) an	id (1+0)
F. Bellosa – Betriebssysteme			WT 2016	/2017	25/35		

RAID 3 (byte-interleaved parity)

- Disks spin in lockstep
- High throughput (e.g. for multimedia file systems)

 Overview
 Disks
 RAID
 Tertiary Storage Devices

 RAID 0
 RAID 1
 RAID 2
 RAID 3
 RAID 4
 RAID 5
 RAID (0+1) and (1+0)

 F. Bellosa – Betriebssysteme
 WT 2016/2017
 26/35

RAID 4 (block-interleaved parity)

Parity computation: $P(0...3) = block_0 \otimes block_1 \otimes block_2 \otimes block_3$ <u>Result:</u>

Small updates require 2 reads (old block + parity) <u>and</u> 2 writes (new block + parity) to update a single disk block. Parity disk may be a bottleneck.

RAID 5 (block-level distributed parity)

- Like RAID 4, but we distribute parity block on all disks ⇒ no longer a "bottleneck disk"
- Update performance still less than on a SLED
- Reconstruction after a failure is a bit tricky

RAID (0 + 1) and (1 + 0)

Tertiary Storage Devices

- Low cost is the defining characteristic of tertiary storage
- Generally, tertiary storage is built using removable media
- Two aspects of speed in tertiary storage are bandwidth and latency
- Bandwidth is measured in bytes per second
 - Sustained bandwidth average data rate during a large transfer: ^{# of bytes} transfer time.
 Data rate when the data stream is actually flowing
 - Data rate when the data stream is actually flowing.
 - Effective bandwidth average over the entire I/O time, including seek or locate, and cartridge switching. Drive's overall data rate.
- Common examples of removable media are removable disks, tapes and optical drives (e.g. DVDs)

Optical Disks (e.g. DVD, CD)

- The data on read-write disks can be modified over and over
 - To write a bit, a laser light heats up phase-change material and brings it to amorphous or crystalline state.
- WORM ("Write Once, Read Many Times") disks can be written only once.
 - To write a bit, a laser light heats up an organic dye
 - Very durable and reliable.

Magnetic Tapes

- Kept in spool and wound or rewound past read-write head
 - Once data under head, transfer rates comparable to disk (160-360 MB/s)
 - 6.4 (LTO-7) 10 TB (IBM 3532) typical capacity
 - Serpentine writng (e.g. 36 tracks x 80 passes)
 - Durability: 30 yrs, 16000 end to end passes
- Compared to a disk, a tape is less expensive and holds more data, but random access is much slower (up to 80 s).
- Tape is an economical medium for purposes that do not require fast random access, e.g. backup copies of disk data, holding huge volumes of data.
- Large tape installations typically use robotic tape changers that move tapes between tape drives and storage slots in a tape library.
 - stacker library that holds a few tapes
 - silo library that holds thousands of tapes
- A disk-resident file can be *archived* to tape for low cost storage; the computer can *stage* it back into disk storage for active use.

Application Interface

- Most OSs handle removable disks almost exactly like fixed disks a new cartridge is formatted and an empty file system is generated on the disk.
- Tapes are presented as a raw storage medium, i.e. and an application does not open a file on the tape, it opens the whole tape drive as a raw device.
- Usually the tape drive is reserved for the exclusive use of that application.
- Since the OS does not provide file system services, the application must decide how to use the array of blocks.
- Since every application makes up its own rules for how to organize a tape, a tape full of data can generally only be used by the program that created it.

Tape Drives

- The basic operations for a tape drive differ from those of a disk drive.
- locate positions the tape to a specific logical block, not an entire track (corresponds to seek).
- The read position operation returns the logical block number where the tape head is.
- The space operation enables relative motion.
- Tape drives are "append-only" devices; updating a block in the middle of the tape also effectively erases everything beyond that block
- An EOT mark is placed after a block is written.

Hierarchical Storage Management (HSM)

- A hierarchical storage system extends the storage hierarchy beyond primary memory and secondary storage to incorporate tertiary storage
 usually implemented as a jukebox of tapes or removable disks.
- Usually incorporate tertiary storage by extending the file system.
 - Small and frequently used files remain on disk.
 - Large, old, inactive files are archived to the jukebox.
- HSM is usually found in supercomputing centers and other large installations that have enormous volumes of data.