
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
17. Implementing File Systems

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu


Implementing File Systems

File-System Structure
File Implementation

Contiguous Allocation
Linked Allocation
Indexed Allocation

Directory Implementation

Buffering

Log-Structured File Systems

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
File-System Organization Virtual File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 2/62



A Typical File-System Organization

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
File-System Organization Virtual File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 3/62



Disk Structure

Disk can be subdivided into partitions

Disks, partitions 1 can be used raw – without a file system, or formatted
with a file system(FS)

Entity containing a FS is known as a volume

Each volume containing a FS also tracks that FS’s info is in the device
directory or the volume table of contents

As well as general-purpose FSs there are many special purpose FSs,
frequently all within the same operating system or computer

1Partitions also known as minidisks, slices
Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
File-System Organization Virtual File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 4/62



Implementing Files

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
File-System Organization Virtual File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 5/62



Implementing a FS on Disk

Possible FS layout per partition
Sector 0 of disk = MBR

Boot info (if PC is booting, BIOS reads and executes MBR)
Disk partition info

Sector 0 of partition is volume boot record

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
File-System Organization Virtual File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 6/62



Layered File System

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
File-System Organization Virtual File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 7/62



A Typical File Control Block

file permissions
file dates (create, access, write)

file owner, group, ACL
file size

file data blocks or pointers to file data blocks

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
File-System Organization Virtual File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 8/62



In-Memory File System Structures

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
File-System Organization Virtual File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 9/62



Virtual File Systems

Virtual File Systems (VFS) provide an object-oriented way of
implementing file systems.

VFS allows the same system call interface (the API) to be used for
different types of file systems.

The API is for the VFS interface, rather than any specific type of file
system.

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
File-System Organization Virtual File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 10/62



Schematic View of Virtual File System

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
File-System Organization Virtual File Systems

F. Bellosa – Betriebssysteme WT 2016/2017 11/62



Implementing Files

FS must keep track of some meta data
Which logical block belongs to which file?
In what order are the blocks that form the file?
Which blocks are free for the next allocation?

Given a logical region of a file, the FS must identify the corresponding
block(s) on disk

Needed meta data stored in
File allocation table (FAT)
Directory
Inode

Creating (and updating) files might imply allocating new blocks (and
modifying old blocks) on the disk

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 12/62



Allocation Policies
Preallocation:

Need to know maximum size of a file at creation time (in some cases no
problem, e.g. file copy etc. )
Difficult to reliably estimate maximum size of a file
Users tend to overestimate file size, just to avoid running out of space

Dynamic allocation:
Allocate in pieces as needed

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 13/62



Fragment Size 2

Extremes
Fragment size = length of file
Fragment size = smallest disk block size (sector size)

Tradeoffs:
Contiguity⇒ speedup for sequential accesses
Many small fragments⇒ larger tables needed to manage free storage
management as well as to support access to files
Larger fragments help to improve data transfer
Fixed-size fragments simplify reallocation of space
Variable-size fragments minimize internal fragmentation, but can lead to
external fragmentation

2see page size discussion
Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 14/62



Implementing Files

3 ways of allocating space for files:
contiguous
chained
indexed

fixed block fragments
variable block fragments

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 15/62



Contiguous Allocation

Array of N contiguous logical blocks reserved per file (to be created)
Minimum meta data per entry in FAT/directory

Starting block address
N

What is a good value for N?

What to do with an application that need more than N blocks?
Discussion similar to ideal page size

Internal Fragmentation
External Fragmentation

⇒ scattered disk

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 16/62



Scattered Disk

(a) Contiguous allocation of disk space for 7 files

(b) State of the disk after files D and F have been removed

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 17/62



Contiguous File Allocation

Remark: To overcome external fragmentation ⇒ periodic compaction

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 18/62



Contiguous File Allocation (After
Compaction)

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 19/62



Chained Allocation (Linked List) (1)

Per file a linked list of logical file blocks, i.e.
Each file block contains a pointer to next file block, i.e. the amount of data
space per block is no longer a power of two,
⇒ Consequences?
Last block contains a NIL-pointer (e.g. −1)

FAT or directory contains address of first file block
No external fragmentation

Any free block can be added to the chain

Only suitable for sequential files
No accommodation of the principle of disk locality

File blocks will end up scattered across the disk
Run a defragmentation utility to improve situation

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 20/62



Chained Allocation (2)

Storing a file as a linked list of disk blocks

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 21/62



Chained Allocation (3)

Remark:
If you only access sequentially this implementation is quite suited.
However requesting an individual record requires tracing through the
chained block, i.e. far too many disk accesses in general.

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 22/62



Linked List Allocation within RAM

Each file block only used for
storing file data
Linked list allocation with FAT in
RAM

Avoids disk accesses when
searching for a block
Entire block is available for data
Table gets far too large for modern
disks,⇒

Can cache only, but still consumes
significant RAM
Used in MS-Dos, OS/2

Similar to an inverted page table, one entry per disk block

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 23/62



File-Allocation Table

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 24/62



Indexed Allocation (1)

Indexed allocation
FAT (or special inode table) contains a one-level index table per file

Generalization n-level-index table

Index has one entry for allocated file block

FAT contains block number for the index

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 25/62



Indexed Allocation (2)

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 26/62



Indexed Allocation (3)

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 27/62



Analysis of Indexed Allocation

Supports sequential and random access to a file
Fragments

Block sized
Eliminates external fragmentation

Variable sized
Improves contiguity
Reduces index size

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 28/62



Indexed Allocation (5)

An example i-node
Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 29/62



Example: UNIX (4k bytes per block)

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 30/62



Summary: File Allocation Methods

characteristic contiguous chained indexed
preallocation? necessary possible possible
fixed or variable si-
ze fragment?

variable fixed fixed variable

fragment size large small small medium
allocation frequen-
cy

once low to high high low

time to allocate medium long short medium
file allocation table
size

one entry one entry large medium

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Contiguous Allocation Chained Allocation Linked List Allocation Indexed Allocation

F. Bellosa – Betriebssysteme WT 2016/2017 31/62



Implementing Directories (1)

(a) A simple directory (MS-DOS)
fixed size entries
disk addresses and attributes in directory entry

(b) Directory in which each entry just refers to an i-node (UNIX)

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Directory Lookup

F. Bellosa – Betriebssysteme WT 2016/2017 32/62



Implementing Directories (2)

What to do when some entries are deleted?
Never reuse

Bridge over the directory holes

Compaction, but when?
eager or
lazy

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Directory Lookup

F. Bellosa – Betriebssysteme WT 2016/2017 33/62



Directory Entries & Long Filenames

Two ways of handling long file names in directories
(a) In-line
(b) In a heap

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Directory Lookup

F. Bellosa – Betriebssysteme WT 2016/2017 34/62



Analysis: Linear Directory Lookup

Linear search⇒ for big directories not efficient
Space efficient as long as we do compaction

Either eagerly after entry deletion or
Lazily (but when?)

With variable file names⇒ deal with fragmentation
Alternatives

(e.g. extensible) hashing
(e.g. B-) tree structures

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Directory Lookup

F. Bellosa – Betriebssysteme WT 2016/2017 35/62



Hashing a Directory Lookup

Method:
Hashing a file name to an inode
Space for filename and meta data is variable sized
Create/delete will trigger space allocation and clearing

Advantages:
Fast lookup and relatively simple

Disadvantages:
Might be not as efficient as trees for very large directories

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Directory Lookup

F. Bellosa – Betriebssysteme WT 2016/2017 36/62



Tree Structure for a Directory

Method:
Sort files by name
Store directory entries in a B-tree like structure
Create/delete/search in that B-tree

Advantages:
Efficient for a large number of files per directory

Disadvantages:
Complex
Not that efficient for a small number of files
More space

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Directory Lookup

F. Bellosa – Betriebssysteme WT 2016/2017 37/62



UNIX File System Structure

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
BSD FFS UNIX Directories

F. Bellosa – Betriebssysteme WT 2016/2017 38/62



Using a UNIX File

Opening a file creates a file descriptor fid

Used as an index into a process-specific table of open files

The corresponding table entry points to a system-wide file table

Via buffered inode table, you finally get the data blocks

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
BSD FFS UNIX Directories

F. Bellosa – Betriebssysteme WT 2016/2017 39/62



Original UNIX File System

Simple disk layout
Block size = sector size (512 bytes)
Inodes on outermost cylinders 3

Data blocks on the inner cylinders
Freelist as a linked list

Issues
Index is large
Fixed number of files
Inodes far away from data blocks
Inodes for directory not close together
Consecutive file blocks can be anywhere
Poor bandwidth for sequential access

3in very early UNIX FSs inode table in the midst of the cylinders
Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
BSD FFS UNIX Directories

F. Bellosa – Betriebssysteme WT 2016/2017 40/62



UNIX File Names

Historically (Version 7) only 14 characters

System V up to 255 ASCII characters
<filename>.<extension>

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
BSD FFS UNIX Directories

F. Bellosa – Betriebssysteme WT 2016/2017 41/62



BSD FFS
Use a larger block size: 4 KB or 8 KB

Allow large blocks to be chopped into 2,4 or 8 fragments
Used for little files and pieces at the end of files

Use bitmap instead of a free list
Try to allocate more contiguously
10% free space reserve for system administrator

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
BSD FFS UNIX Directories

F. Bellosa – Betriebssysteme WT 2016/2017 42/62



BSD FFS Directory (1)

Directory entry needs three elements:
length of dir-entry (variable length of file names)
file name (up to 255 characters)
inode number (index to a table of inodes)

Each directory contains at least two entries:
.. = link to the parent directory (forming the directory tree)
. = link to itself

FFS offers a “tree-like structure” (like Multics), supporting human
preference, ordering hierarchically

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
BSD FFS UNIX Directories

F. Bellosa – Betriebssysteme WT 2016/2017 43/62



BSD FFS Directory (2)

BSD directory tree entries (voluminous = hardlink to colossal)

Same directory after file voluminous has been removed

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
BSD FFS UNIX Directories

F. Bellosa – Betriebssysteme WT 2016/2017 44/62



UNIX Directories

Multiple directory entries may point to same inode (hard link) within the
same file system

Pathnames are used to identify files
/etc/passwd an absolute pathname
../home/lief/examination a relative pathname

Pathnames are resolved from left to right

As long as it’s not the last component of the pathname, the component
name must be a directory

With symbolic links you can address files and directories with different
names. You can even define a symbolic link to a file currently not
mounted (or even that never existed); i.e. a symbolic link is a file
containing a pathname

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
BSD FFS UNIX Directories

F. Bellosa – Betriebssysteme WT 2016/2017 45/62



Logical an Physical File System (1)

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 46/62



Mounting a File System

(a) Before mounting

(b) After mounting

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 47/62



Logical and Physical File System (2)

A logical file system can consist of different physical file systems

A file system can be mounted at any place within another file system

When accessing the “local root” of a mounted file system, a bit in its
inode identifies this directory as a so-called mount point

Using mount respectively umount the OS manages a so called mount
table supporting the resolution of path name crossing file systems

The only file system that has to be resident is the root file system (in
general on a partition of a hard disk)

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 48/62



Layout of a Logical Disk

Each physical file system is placed within a logical disk partition. A
physical disk may contain several logical partitions (or logical disks)
Each partition contains space for the boot block, a super block (FS
characteristics, block allocation info), the inode table and the data
blocks
Only the root partition contains a real boot block
Border between inodes and data blocks region can be set, thus
supporting better usage of the file system

with either few large files or
with many small files

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 49/62



Hard Links↔ Symbolic Links

Hard link is another file name, i.e. ∃ another directory entry pointing to a
specific file; its inode-field is the same in all hard links. Hard links are
bound to the logical device (partition).
Each new hard link increases the link counter in file’s i-node. As long as
link counter 6= 0, file remains existing after a rm. In all cases, a remove
decreases link counter.
Symbolic link is a new file containing a pathname pointing to a file or to a
directory. Symbolic links evaluated per access. If file or directory is
removed the symbolic link points to nirvana.
You may even specify a symbolic link to a file or to a directory currently not
present or even currently not existent.

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 50/62



UNIX Inode

Field Bytes Description
Mode 2 File type, protection bits, setuid, setgid bits
Nlinks 2 Number of directory entries pointing to this i-node
UID 2 UID of the file owner
GID 2 GID of the file owner
Size 4 File size in bytes
Addr 39 Address of first 10 disk blocks, then 3 indirect blocks

Gen 1
Generation number (incremented every time i-node
is reused)

Atime 4 Time the file was last accessed
Mtime 4 Time the file was last modified

Ctime 4
Time the i-node was last changed (except the other
times)

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 51/62



Access Structure

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 52/62



Buffering

Disk blocks are buffered in main memory. Access to buffers is done via
a hash table

Blocks with the same hash value are chained together

Buffer replacement policy = LRU

Free buffer management is done via a double-linked list

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 53/62



UNIX Block Header

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 54/62



UNIX Buffer Cache (1)

Remark: X, Y, and Z are block headers of blocks mapped into the same
hash table entry

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 55/62



UNIX Buffer Cache (2)

Remark: The free list contains all block headers, establishing a LRU
order

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 56/62



UNIX Buffer Cache (3)

Advantages:

reduces disk traffic

“well-tuned buffer has hit rates up to 90% (according to Ousterhost 10th
SOSP 1985)

∼ 10% of main memory for the buffer cache (recommendation for old
configurations)

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 57/62



UNIX Buffer Cache (4)

Disadvantages:
Write-behind policy might lead to

data losses in case of system crash and/or
inconsistent state of the FS

⇒ rebooting system might take some time due to fsck, i.e. checking all
directories and files of FS

Always two copies involved
from disk to buffer cache (in kernel space)
from buffer to user address space

FS Cache wiping if sequentially reading a very large file from end to
end and not accessing it again

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 58/62



The Linux Ext2fs File System

Ext2fs uses mechanism similar to that of BSD Fast File System (ffs) for
locating data blocks belonging to a specific file
The main differences between ext2fs and ffs concern their disk
allocation policies

In ffs, the disk is allocated to files in blocks of 8 Kb, with blocks being
subdivided into fragments of 1 Kb to store small files or partially filled blocks
at the end of a file
Ext2fs does not use fragments

The default block size on ext2fs is 1 Kb, although 2 Kb and 4 Kb blocks are also
supported

Ext2fs uses allocation policies designed to place logically adjacent blocks of
a file into physically adjacent blocks on disk, so that it can submit an I/O
request for several disk blocks as a single operation

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 59/62



Ext2fs Block-Allocation Policies

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 60/62



Journaling File Systems

Journaling file systems record each update to the file system as a
transaction
All transactions are written to a log

A transaction is considered committed once it is written to the log
However, the file system may not yet be updated

The transactions in the log are asynchronously written to the file system

When the file system is modified, the transaction is removed from the log

If the file system crashes, all remaining transactions in the log must still
be performed

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 61/62



Log-Structured File Systems

Log-structured FS: use disk as a circular buffer
Write all updates, including inodes, meta data and data to end of log

have all writes initially buffered in memory
periodically write these within 1 segment (1 MB)
when file opened, locate i-node, then find blocks

From the other end, clear all data , no longer used

Implementing File Systems Implementing Files Implementing Directories UNIX File System Structure Logical and Physical Filesystem
Hard Vs. Softlinks I-Nodes Buffering Ext2fs

F. Bellosa – Betriebssysteme WT 2016/2017 62/62


	17. Implementing File Systems
	Implementing File Systems
	File-System Organization
	Virtual File Systems

	Implementing Files
	Contiguous Allocation
	Chained Allocation
	Linked List Allocation
	Indexed Allocation

	Implementing Directories
	Directory Lookup

	UNIX File System Structure
	BSD FFS
	UNIX Directories

	Logical and Physical Filesystem
	Hard Vs. Softlinks
	I-Nodes
	Buffering
	Ext2fs



