
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
I/O System

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu


I/O Systems

Device Management Objectives

Device Characterization
Device Interface

Control
Data Transfer

Kernel I/O Subsystem
Device Independent Services
Device Drivers
Data Structures
Device Buffers

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 2/43



Device Management Objectives

Abstraction from details of physical devices

Uniform Naming that does not depend on HW details

Serialization of I/O-operations by concurrent applications

Protection of standard-devices against unauthorizes accesses

Buffering, if data from/to a device cannot be stored in the final
destination

Error Handling of sporadic device errors

Virtualizing physical devices via memory and time multiplexing (e.g. pty,
RAM disk)

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 3/43



Characteristics of I/O Devices (1)

Block devices include disk drives
Commands include read, write, seek
Raw I/O or file-system access
Memory-mapped file access possible

Character devices include keyboards, mice, serial ports
Commands include get, put
Libraries layered on top allow line editing

Network devices vary enough from block and character devices to
have own interface

UNIX and Windows include socket interface
Separates network protocol from network operation
Includes select functionality

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 4/43



Characteristics of I/O Devices (2)

aspect variation example
data-transfer mode character block terminal disk

access method sequential random modern CD-ROM

transfer schedule
synchronous
asynchronous

tape
keyboards

sharing
dedicated
sharable

tape
keyboard

device speed

latency
seek time
transfer rate
delay between opera-
tions

I/O direction
read only
write only
read-write

CD-ROM
graphics controller
disk

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 5/43



Device Speed

Device Data rate
Keyboard 10 bytes/sec

Mouse 100 bytes/sec
56K modem 7 KB/sec

Telephone channel 8 KB/sec
Dual ISDN lines 16 KB/sec

Laser printer 100 KB/sec
Scanner 400 KB/sec

Classic Ethernet 1.25 MB/sec
USB (Universal Serial Bus) 1.5 MB/sec

Digital camcorder 4 MB/sec
IDE disk 5 MB/sec

40× CD-ROM 6 MB/sec
Fast Ethernet 12.5 MB/sec

ISA bus 16.7 MB/sec
EIDE (ATA-2) disk 16.7 MB/sec

FireWire (IEEE 1394) 50 MB/sec
XGA Monitor 60 MB/sec

SONET OC-12 network 78 MB/sec
SCSI Ultra 2 disk 80 MB/sec
Gigabit Ethernet 125 MB/sec

Ultrium tape 310 MB/sec
PCI bus 528 MB/sec

Sun Gigaplane XB backplane 20 GB/sec

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 6/43



A Typical PC Bus Structure

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 7/43



I/O Hardware
Common components

Controller
Port (external connection point)
Bus (daisy chain or shared direct access)

Devices have addresses, used by
Direct I/O instructions (e.g. to access x86 I/O ports)
Memory-mapped I/O

Device addresses typically point to
Status register
Control register
Data-in register
Data-out register

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 8/43



Device I/O Port Locations on PCs
(partial)

I/O address range (hexadecimal) device
000− 00F DMA controller
020− 021 interrupt controller
040− 043 timer
200− 20F game controller
2F8− 2FF serial port (secondary)
320− 32F hard-disk controller
378− 37F parallel port
3D0− 3DF graphics controller
3F0− 3F7 diskette-drive controller
3F8− 3FF serial port (primary)

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 9/43



Memory-Mapped I/O (1)

Separate I/O-address space and memory address space
MOV R0, 4 //<4> → R0
IN R0, 4 // <port 4> → R0

Memory-mapped I/O // 1 common physical AS

Hybrid (Pentium) // part of I/O space in memory part in an extra

// address space
I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 10/43



Memory-Mapped I/O (2)

(a) Single-bus architecture

(b) Dual-bus memory architecture

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 11/43



Techniques for I/O-Management

Programmed I/O
Thread is busy-waiting for the I/O-operation to complete, processorcannot
be used elsewhere
Kernel thread is Polling the state of an I/O device

command-ready
busy
Error

Interrupt-driven I/O
I/O-command is issued
processor continues executing instructions
I/O-device sends an interrupt when I/O-command is done

Direct Memory Access (DMA)
DMA module controls exchange of data between main memory and I/O
device
processor interrupted after entire block has been transferred
bypasses CPU to transfer data directly between I/O device and memory

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 12/43



Intel Pentium Event-Vector Table

vector number description
0 divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detected overflow
5 bound range exception
6 invalid opcode
7 device not available
8 double fault
9 coprocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check

19 – 31 (Intel reserved, do not use)
32 – 255 maskable interrupts

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 13/43



Interrupt-Driven I/O Cycle

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 14/43



Steps for Handling an Interrupt (1)

1 Save registers no already saved by HW-interrupt mechanism
2 Set up context (address space) for interrupt service procedure

Typically, handler runs in the context of the currently running process/task
⇒ not that expensive context switch

3 Set up stack for interrupt service procedure
Handler usually runs on the kernel stack of the current process/kernel-level
thread
Handler cannot block, otherwise the unlucky interrupted
process/kernel-thread would also be blocked, might lead to starvation or
even to a deadlock

4 Acknowledge/mask interrupt controller, thus re-enable other interrupts

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 15/43



Steps for Handling an Interrupt (2)

5 Run interrupt service procedure
Acknowledge interrupt at device level
Figures out what caused the interrupt, e.g.

Received a network packet
Disk read has properly finished, . . .

If needed, it signals the blocked device driver
6 In some cases, we have to wake up a higher priority process/kernel

level thread
Potentially schedule another process/kernel-level thread
Set up MMU context for process to run next

7 Load new/original process’ registers
8 Return from Interrupt, start running new/original process

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 16/43



Six Step Process to Perform DMA
Transfer

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 17/43



DMA Transfer with Fly-By Mode

Word Mode (→ cycle stealing)

Burst Mode

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O I/O Techniques DMA Transfer

F. Bellosa – Betriebssysteme WT 2016/2017 18/43



I/O System Organization

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface I/O Software Layers

F. Bellosa – Betriebssysteme WT 2016/2017 19/43



Application I/O Interface

I/O system calls encapsulate device behaviors in generic classes

Device-driver layer hides differences among I/O controllers from kernel
Devices vary in many dimensions

Character-stream or block
Sequential or random-access
Sharable or dedicated
Speed of operation
read-write, read only, or write only

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface I/O Software Layers

F. Bellosa – Betriebssysteme WT 2016/2017 20/43



A Kernel I/O Structure

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface I/O Software Layers

F. Bellosa – Betriebssysteme WT 2016/2017 21/43



Kernel I/O Subsystem (1)

Scheduling
Some I/O request ordering via per-device queue
Some OSs try fairness

Buffering – store data in memory while transferring between devices
To cope with device speed mismatch
To cope with device transfer size mismatch
To maintain “copy semantics”

Error handling
OS can recover from disk read, device unavailable, transient write failures
Most return an error number or code when I/O request fails
System error logs hold problem reports

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface I/O Software Layers

F. Bellosa – Betriebssysteme WT 2016/2017 22/43



Kernel I/O Subsystem (2)

Protection
User process may accidentally or purposefully attempt to disrupt normal
operation via illegal I/O instructions
I/O must be performed via system calls

Memory-mapped and I/O port memory locations must be protected too

Spooling
Hold output for a device, if device can serve only one request at a time (i.e.
printing)

Device reservation – provides exclusive access to a device
System calls for allocation and deallocation
Watch out for deadlock

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface I/O Software Layers

F. Bellosa – Betriebssysteme WT 2016/2017 23/43



I/O Software Summary

Layers of I/O system and main functions of each layer

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface I/O Software Layers

F. Bellosa – Betriebssysteme WT 2016/2017 24/43



Device-Independent I/O Software

There is some commonality between drivers of similar classed⇒
Divide I/O software into device-dependent and device independent I/O
software, e.g.

Buffer or buffer-cache management, i.e. provide a device-independent block size
Allocating and releasing dedicate devices
Error reporting to upper levels, i.e. all errors the driver cannot resolve

Uniform device interface for kernel code
Allows different devices to be used in the same way, e.g. no need to rewrite your
file-system when you are switching from IDE to SCSI or even to RAM disks
Allows internal changes of drivers without fearing of breaking kernel code

Uniform kernel interface for device code
Drivers use a defined interface to kernel service, e.g. kmalloc, install IRQ
handler, etc.
Allows kernel to evolve without breaking device drivers

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface I/O Software Layers

F. Bellosa – Betriebssysteme WT 2016/2017 25/43



Device Driver
Drivers classified into similar categories

Block devices and
Character (stream of data) devices

OS defines standard (internal) interface to the different classes of
device

Device drivers job
Translate user request through device-independent standard interface, (e.g.
open, read, . . . , close) into appropriate sequence of device or controller
commands (register manipulation)
Initialize HW at boot time
Shut down HW

I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa – Betriebssysteme WT 2016/2017 26/43



Device Driver
After issue the command to the device, device either

completes immediately and the driver simply returns to the caller or it
processes request and the driver usually blocks waiting for an I/O
(complete) interrupt signal

Drivers are reentrant as they can be called by another process while a
process is already blocked in the driver

Reentrant: code that can be executed by more than one thread (or CPU) at
the same time

Manages concurrency using sync primitives

I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa – Betriebssysteme WT 2016/2017 27/43



Life Cycle of an I/O Request

I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa – Betriebssysteme WT 2016/2017 28/43



Kernel Data Structures

Kernel keeps state info for I/O components, including open file tables,
network connections, character device state

Many, many complex data structures to track buffers, memory
allocation, “dirty” blocks

Some use object-oriented methods and message passing to implement
I/O

I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa – Betriebssysteme WT 2016/2017 29/43



UNIX I/O Kernel Structure

I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa – Betriebssysteme WT 2016/2017 30/43



Device-status Table

I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa – Betriebssysteme WT 2016/2017 31/43



STREAMS (e.g., in SVR4)

STREAM – a full-duplex communication channel between a user-level
process and a device in UNIX System V and beyond
A STREAM consists of:

STREAM head interfaces with the user process
driver end interfaces with the device
zero or more STREAM modules between them

Each module contains a read queue and a write queue

Message passing is used to communicate between queues

I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa – Betriebssysteme WT 2016/2017 32/43



The STREAMS Structure

I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa – Betriebssysteme WT 2016/2017 33/43



I/O Buffering

Reasons for buffering
Otherwise threads must wait for I/O to complete before proceeding
Pages must remain in main memory during physical I/O

Block-oriented
information is stored in fixed sized blocks
transfers are made a block at a time
used for disks and tapes

Stream-oriented
transfer information as a stream of bytes
used for terminals, printers, communication ports, mouse and most other
devices that are not secondary storage

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa – Betriebssysteme WT 2016/2017 34/43



No Buffering

Process reads/writes a device a byte/word at a time
Each individual system call adds significant overhead
Process must wait until every I/O is complete
Blocking/Interrupt handling/unblocking adds to overhead
Many short CPU phases are inefficient, because

overhead induced by thread switch
poor cache and TLB usage

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa – Betriebssysteme WT 2016/2017 35/43



User Level Buffering (1)

Task specifies a memory buffer that incoming data is placed in until it
fills

Filling can be done by interrupt service routine
Only one system call and block/unblock per data buffer

More efficient than “NO BUFFERING”

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa – Betriebssysteme WT 2016/2017 36/43



User Level Buffering (2)

Issues
What happens if buffer is currently paged out to disk?

You may loose data while buffer is paged in
You could lock/pin this buffer (needed for DMA), however, you have to trust the
application programmer, that she/he is not starting a denial of service attack

Additional problems with writing?
When is the buffer available for re-use?

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa – Betriebssysteme WT 2016/2017 37/43



Single Buffer (1)

User Process can process one block of data while next block is read in

Swapping can occur since input is taking place in system memory, not
user memory

OS keeps track of assignment of system buffers to user processes

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa – Betriebssysteme WT 2016/2017 38/43



Single Buffer (2)

Stream-oriented
Buffer is an input line at time with carriage return signaling the end of the
line

Block-oriented
Input transfers made to system buffer
Buffer moved to user space when needed
Another block is read into system buffer

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa – Betriebssysteme WT 2016/2017 39/43



Single Buffer Speed Up

Performance Model:
T = transfer time from device
C = copying time from system- to user-buffer
P = processing time of complete buffer content
Processing and transfer can be done in parallel
Potential speed up with single buffering:

T + P
max{T ,P}+ C

What happens if system buffer is full, user buffer is swapped out, and
more data is received?

Loose characters or drop network packets

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa – Betriebssysteme WT 2016/2017 40/43



Double Buffer

Use 2 system buffers instead of 1 (per user process)

User process can write to or read from one buffer while the OS empties
or fills the other buffer

Speed up with double buffering:

T + P
max{T ,P + C}

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa – Betriebssysteme WT 2016/2017 41/43



Timing Diagram for Double Buffering

Analysis: The slower I/O-device is busy the whole input-period, thus
additional buffers are not needed (in this case).

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa – Betriebssysteme WT 2016/2017 42/43



Circular Buffering

Double buffering may be insufficient for really bursty traffic situations:
Many writes between long periods of computations
Long periods of computations while receiving data
Might want to read ahead more than just a single block from disk

Single-, double-, and circular-buffering are all bounded

Þ Buffer producer-/consumer problems

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa – Betriebssysteme WT 2016/2017 43/43


	I/O System
	I/O System
	Device Management
	I/O Hardware
	Memory-Mapped I/O
	I/O Techniques
	DMA Transfer

	Interfaces
	Application I/O Interface
	Kernel I/O Interface
	I/O Software Layers

	Device Driver
	Kernel Data Structures
	Buffers
	User Level Buffering
	Single Buffer
	Double Buffer
	Circular Buffering



