KIT

Karlsruhe Institute of Technology

Betriebssysteme

1/0 System
Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KARLSRUHE INSTITUTE OF TECHNOLOG OPERATING SYSTEMS GROUP

KIT - Universitét des Landes Baden-Wirttemberg und
nationales in der Helmholt

http://www.kit.edu

/0 Systems

a Device Management Objectives

a Device Characterization
a Device Interface

a Control

a Data Transfer
m Kernel I/O Subsystem

a Device Independent Services
a Device Drivers
m Data Structures
m Device Buffers

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O 1/0 Techniques DMA Transfer

F. Bellosa — Betriebssysteme WT 2016/2017 2/43

Device Management Objectives

Abstraction from details of physical devices

Uniform Naming that does not depend on HW details
Serialization of I/O-operations by concurrent applications
Protection of standard-devices against unauthorizes accesses

Buffering, if data from/to a device cannot be stored in the final
destination

Error Handling of sporadic device errors

m Virtualizing physical devices via memory and time multiplexing (e.g. pty,
RAM disk)

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O 1/0 Techniques DMA Transfer

F. Bellosa — Betriebssysteme WT 2016/2017 3/43

Characteristics of I1/0 Devices (1)

m Block devices include disk drives
m Commands include read, write, seek
a Raw /O or file-system access
a Memory-mapped file access possible
m Character devices include keyboards, mice, serial ports
m Commands include get, put
a Libraries layered on top allow line editing
a Network devices vary enough from block and character devices to
have own interface
a UNIX and Windows include socket interface

m Separates network protocol from network operation
a Includes select functionality

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O 1/0 Techniques DMA Transfer

F. Bellosa — Betriebssysteme WT 2016/2017 4/43

Characteristics of I/0 Devices (2)

aspect variation example
data-transfer mode | character block terminal disk
access method sequential random modern CD-ROM
synchronous tape
transfer schedule y P
asynchronous keyboards
. dedicated tape
sharing
sharable keyboard
latency
seek time
device speed transfer rate
delay between opera-
tions
read only CD-ROM
I/O direction write only graphics controller

read-write disk

I/O System Interfaces Device Driver Kernel Data Structures

Device Management I/O Hardware Memory-Mapped I/O 1/0 Techniques

F. Bellosa — Betriebssysteme WT 2016/2017

Buffers
DMA Transfer
5/43

Device Speed

1/O System
Device Management

F. Bellosa — Betriebssysteme

Interfaces

I/O Hardware

Device Data rate
Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Telephone channel 8 KB/sec
Dual ISDN lines 16 KB/sec
Laser printer 100 KB/sec
Scanner 400 KB/sec
Classic Ethernet 1.25 MB/sec
USB (Universal Serial Bus) 1.5 MB/sec
Digital camcorder 4 MB/sec
IDE disk 5 MB/sec
40x CD-ROM 6 MB/sec
Fast Ethernet 12.5 MB/sec
ISA bus 16.7 MB/sec
EIDE (ATA-2) disk 16.7 MB/sec
FireWire (IEEE 1394) 50 MB/sec
XGA Monitor 60 MB/sec
SONET OC-12 network 78 MB/sec
SCSI Ultra 2 disk 80 MB/sec
Gigabit Ethernet 125 MB/sec
Ultrium tape 310 MB/sec
PCl bus 528 MB/sec
Sun Gigaplane XB backplane 20 GB/sec

Device Driver

Kernel Data Structures

Memory-Mapped I/O

1/0 Techniques
WT 2016/2017

Buffers
DMA Transfer
6/43

A Typical PC Bus Structure

@)
@)
@

SCSI bus

monitor processor

‘ }—{ cache ‘ @
graphics bridge/memory -
controller controller SCSI controller
] T PCI bus i)

IDE disk controller expansion bus keyboard
interface

|
@ @ 0 I—i—exlaansion bus_i_)

@ @ parallel serial
port port

1/0 System Interfaces Device Driver Kernel Data Structures Buffers
Device Management 1/0 Hardware Memory-Mapped I/O 1/0 Techniques DMA Transfer
WT 2016/2017 7/43

F. Bellosa — Betriebssysteme

/0 Hardware

® Common components

a Controller

a Port (external connection point)

a Bus (daisy chain or shared direct access)
a Devices have addresses, used by

a Direct I/O instructions (e.g. to access x86 I/O ports)

a Memory-mapped I/O
m Device addresses typically point to

m Status register

a Control register

a Data-in register

m Data-out register

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management 1/0 Hardware Memory-Mapped I/O 1/0 Techniques DMA Transfer

F. Bellosa — Betriebssysteme WT 2016/2017 8/43

Device I/0O Port Locations on PCs

(partial)
I/O address range (hexadecimal) device

000 — 00F DMA controller
020 — 021 interrupt controller
040 — 043 timer
200 — 20F game controller
2F8 — 2FF serial port (secondary)
320 — 32F hard-disk controller
378 — 37F parallel port
3D0 — 3DF graphics controller
3F0 — 3F7 diskette-drive controller
3F8 — 3FF serial port (primary)

/O System Interfaces Device Driver Kernel Data Structures

Device Management 1/0 Hardware Memory-Mapped 1/0 /0 Techniques

F. Bellosa — Betriebssysteme

WT 2016/2017

Buffers
DMA Transfer
9/43

Memory-Mapped I/0 (1)

Two address One address space Two address spaces

OxFFFF... Memory

1/0 ports

o [] []
(a) (b) (0
m Separate I/0O-address space and memory address space

m MOV RO, 4 //<4> — RO
m IN RO, 4 // <port 4> — RO

® Memory-mapped I/O // 1 common physical AS
a Hybrid (Pentium) // part of I/O space in memory part in an extra
/I address space

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O 1/0 Techniques DMA Transfer

F. Bellosa — Betriebssysteme WT 2016/2017 10/43

Memory-Mapped 1/0 (2)

CPU Memory| /0

I T I

\ t

All addresses (memory B
and |/0) go here us

@

(a) Single-bus architecture
(b) Dual-bus memory architecture

1/O System Interfaces Device Driver
Device Management I/O Hardware Memory-Mapped I/O

F. Bellosa — Betriebssysteme

CPU reads and writes of memory
go over this high-bandwidth bus

CPU Memory 1’0
L I I
~]

This memory port is
to allow I/O devices
access to memory

(b)
Kernel Data Structures Buffers
1/0 Techniques DMA Transfer
WT 2016/2017 11/43

Techniques for /0O-Management

a Programmed I/O
m Thread is busy-waiting for the 1/O-operation to complete, processorcannot
be used elsewhere
m Kernel thread is Polling the state of an I/O device
a command-ready
a busy
a Error
a Interrupt-driven 1/O

a [/O-command is issued
m processor continues executing instructions
a |/O-device sends an interrupt when I/O-command is done

@ Direct Memory Access (DMA)
a DMA module controls exchange of data between main memory and 1/O
device
a processor interrupted after entire block has been transferred
m bypasses CPU to transfer data directly between I/O device and memory

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O 1/O Techniques DMA Transfer

F. Bellosa — Betriebssysteme WT 2016/2017 12/43

Intel Pentium Event-Vector Table

vector number description

0 divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detected overflow
5 bound range exception
6 invalid opcode
7 device not available
8 double fault
9 coprocessor segment overrun (reserved)
10 invalid task state segment
1 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check

19-31 (Intel reserved, do not use)

32 - 255 maskable interrupts

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O 1/O Techniques DMA Transfer

F. Bellosa — Betriebssysteme WT 2016/2017 13/43

Interrupt-Driven I/0O Cycle

1/0 System
Device Management

CPU

1/0 controller

—> device driver initiates I/O \
v initiates 1/0
!
CPU executing checks for
interrupts between instructions
E 3
v
CPU receiving interrupt, 4 input ready, output
transfers control to complete, or error
interrupt handler generates interrupt signal
|s
interrupt handler
processes data,
returns from interrupt
|
CPU resumes
— processing of
interrupted task
Interfaces Device Driver Kernel Data Structures Buffers
1/O Hardware Memory-Mapped I/O 1/0 Techniques DMA Transfer
WT 2016/2017 14/43

F. Bellosa — Betriebssysteme

Steps for Handling an Interrupt (1)

@ Save registers no already saved by HW-interrupt mechanism
@ Set up context (address space) for interrupt service procedure
a Typically, handler runs in the context of the currently running process/task
= not that expensive context switch
@ Set up stack for interrupt service procedure

a Handler usually runs on the kernel stack of the current process/kernel-level
thread

a Handler cannot block, otherwise the unlucky interrupted
process/kernel-thread would also be blocked, might lead to starvation or
even to a deadlock

@ Acknowledge/mask interrupt controller, thus re-enable other interrupts

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O 1/O Techniques DMA Transfer

F. Bellosa — Betriebssysteme WT 2016/2017 15/43

Steps for Handling an Interrupt (2)

@ Run interrupt service procedure

a Acknowledge interrupt at device level
m Figures out what caused the interrupt, e.g.

m Received a network packet
m Disk read has properly finished, . ..

a If needed, it signals the blocked device driver

@ In some cases, we have to wake up a higher priority process/kernel
level thread

a Potentially schedule another process/kernel-level thread
a Set up MMU context for process to run next

@ Load new/original process’ registers
@ Return from Interrupt, start running new/original process

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O 1/O Techniques DMA Transfer
F. Bellosa — Betriebssysteme WT 2016/2017 16/43

Six Step Process to Perform DMA

Transfer

1. device driver is told
to transfer disk data
to buffer at address X

2. device driver tells

5. DMA controller

CPU

transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untilC =0 DMADUS!
us
6. when C = 0, DMA . — X
interrupts CPU to signal cl:gtri:g:retr)— CELLmemonbuss) memory
transfer completion |
f | ' PCl bus
[3. disk controller initiates
IDE disk DMA transfer
controller | 4_ disk controller sends
each byte to DMA
controller

86
CIS

1/O Hardware

1/0 System
Device Management

F. Bellosa — Betriebssysteme

Device Driver
Memory-Mapped I/O

Kernel Data Structures
1/0 Techniques
WT 2016/2017

Buffers
DMA Transfer
17/43

DMA Transfer with Fly-By Mode

@/ Drive

1.CPU
programs DMA Disk Main
CPU the DMA controller controller memory
controller o Buffer
L
yd Y
4. Ack
,’ N

4 l l 4

Interrupt when 2. DMA requests
done transfer to memory \3. Data transferred

~<—Bus
® Word Mode (— cycle stealing)
a Burst Mode
I/O System Interfaces Device Driver Kernel Data Structures Buffers
Device Management I/O Hardware Memory-Mapped I/O 1/0 Techniques DMA Transfer

F. Bellosa — Betriebssysteme WT 2016/2017 18/43

I/0 System Organization

Application

A

Device Independent I/O Subsystem
(e.g. File System)

A\ 4

Device Driver

Command | | Status | | Data
1/0 System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface 1/O Software Layers

F. Bellosa — Betriebssysteme WT 2016/2017 19/43

Application I/O Interface

m |/O system calls encapsulate device behaviors in generic classes

a Device-driver layer hides differences among I/O controllers from kernel
a Devices vary in many dimensions

a Character-stream or block

a Sequential or random-access

a Sharable or dedicated

a Speed of operation

a read-write, read only, or write only

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface 1/O Software Layers

F. Bellosa — Betriebssysteme WT 2016/2017 20/43

A Kernel I/0O Structure

kernel
o
©
5 kernel 1/O subsystem
3
SCSI keyboard | mouse PCl bus floppy ATAPI
device device device (XX device device device
driver driver driver driver driver driver
SCSI keyboard | mouse PCI bus floppy ATAPI
device device device LX) device device device
° controller | controller | controller controller | controller | controller
0 S N N S
B
2 ATAPI
scsl floppy- | | devices
devices | | keyboard| | mouse oo PCI bus disk (disks,
drives tapes,
drives)
I/O System Interfaces Device Driver Kernel Data Structures

Application I/O Interface
F. Bellosa — Betriebssysteme

Kernel I/O Interface

Buffers

1/O Software Layers

WT 2016/2017

21/43

Kernel /0 Subsystem (1)

a Scheduling

m Some I/O request ordering via per-device queue
a Some OSs try fairness

m Buffering — store data in memory while transferring between devices
a To cope with device speed mismatch
m To cope with device transfer size mismatch
a To maintain “copy semantics”
a Error handling
a OS can recover from disk read, device unavailable, transient write failures

m Most return an error number or code when 1/O request fails
a System error logs hold problem reports

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface 1/O Software Layers

F. Bellosa — Betriebssysteme WT 2016/2017 22/43

Kernel /0O Subsystem (2)

a Protection

m User process may accidentally or purposefully attempt to disrupt normal
operation via illegal 1/O instructions
a /O must be performed via system calls

a Memory-mapped and I/O port memory locations must be protected too
a Spooling
a Hold output for a device, if device can serve only one request at a time (i.e.
printing)
m Device reservation — provides exclusive access to a device

m System calls for allocation and deallocation
a Watch out for deadlock

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface 1/O Software Layers

F. Bellosa — Betriebssysteme WT 2016/2017 23/43

/0 Software Summary

l{e]
Layer reply I/O functions
/0 User processes d Make I/O call; format 1/O; spooling

b~
]

request |

* Device-independent

| coftware Naming, protection, blocking, buffering, allocation

—1>

Device drivers Set up device registers; check status

—

Interrupt handlers Wake up driver when I/O completed

——

Hardware Perform I/O operation

Layers of I/0O system and main functions of each layer

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface 1/0 Software Layers

F. Bellosa — Betriebssysteme WT 2016/2017 24/43

Device-Independent I/O Software

a There is some commonality between drivers of similar classed =
a Divide I/0O software into device-dependent and device independent 1/0
software, e.g.
a Buffer or buffer-cache management, i.e. provide a device-independent block size
a Allocating and releasing dedicate devices
a Error reporting to upper levels, i.e. all errors the driver cannot resolve
a Uniform device interface for kernel code

a Allows different devices to be used in the same way, e.g. no need to rewrite your
file-system when you are switching from IDE to SCSI or even to RAM disks
a Allows internal changes of drivers without fearing of breaking kernel code
a Uniform kernel interface for device code

m Drivers use a defined interface to kernel service, e.g. kmalloc, install IRQ
handler, etc.
a Allows kernel to evolve without breaking device drivers

I/O System Interfaces Device Driver Kernel Data Structures Buffers
Application I/O Interface Kernel I/O Interface 1/O Software Layers

F. Bellosa — Betriebssysteme WT 2016/2017 25/43

Device Driver

m Drivers classified into similar categories
a Block devices and
a Character (stream of data) devices
m OS defines standard (internal) interface to the different classes of
device
a Device drivers job
m Translate user request through device-independent standard interface, (e.g.
open, read, ..., close) into appropriate sequence of device or controller
commands (register manipulation)
a [nitialize HW at boot time
a Shut down HW

1/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa — Betriebssysteme WT 2016/2017 26/43

Device Driver

m After issue the command to the device, device either

a completes immediately and the driver simply returns to the caller or it
m processes request and the driver usually blocks waiting for an I/O
(complete) interrupt signal

m Drivers are reentrant as they can be called by another process while a
process is already blocked in the driver

a Reentrant: code that can be executed by more than one thread (or CPU) at
the same time

a Manages concurrency using sync primitives

1/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa — Betriebssysteme WT 2016/2017 27/43

Life Cycle of an I/0 Request

user /O completed,
request /O process input data available, or
output completed
Systemicall return from system call
ki
i transfer data
o) VO subsystem a o .
satisty request? yes return completion
or error code
send request to device
driver, block process if kernel
‘appropriate VO subsystem
process request, issue determine which VO
et G S device completed, Indicate state
configure controller to driver o /0 sul
block until interrupted
ternupt receive interrupt, store
v / data in device-driver buffer
device-controller commands handler it input, signal to unblock
devi
interrupt
|
device
‘monitor device, controller
~ /O completed,
interrupt when 11O
completed generate interrupt
time
I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa — Betriebssysteme WT 2016/2017 28/43

Kernel Data Structures

m Kernel keeps state info for I/O components, including open file tables,
network connections, character device state

a Many, many complex data structures to track buffers, memory
allocation, “dirty” blocks

m Some use object-oriented methods and message passing to implement
I/O

I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa — Betriebssysteme WT 2016/2017 29/43

UNIX 1/0 Kernel Structure

system-wide open-file table

file descriptorf»{open-file table

per-process

7

file-system record

inode pointer

pointer to read and write functions
pointer to select function

7 pointer to ioctl function

pointer to close function

active-inode
table

user-process memory

1/O System

F. Bellosa — Betriebssysteme

Interfaces

. network-
4 networking (socket) record information
table
pointer to network info
pointer to read and write functions
pointer to select function
pointer to ioctl function
pointer to close function
.
.
.
kernel memory
Device Driver Kernel Data Structures
WT 2016/2017

Buffers

30/43

Device-status Table

device: keyboard
status: idle
device: laser printer | request for 1
status: busy laser printer
address: 38546
device: mouse length: 1372
status: idle
device: disk unit 1
status: idle
:gf;:gfsk unit2 » request for > request for __-I_-
s disk unit 2 disk unit 2
file: xxx file: yyy
operation: read operation: write
address: 43046 address: 03458
length: 20000 length: 500
I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa — Betriebssysteme WT 2016/2017 31/43

STREAMS (e.g., in SVR4)

a STREAM - a full-duplex communication channel between a user-level
process and a device in UNIX System V and beyond

a A STREAM consists of:

a STREAM head interfaces with the user process
m driver end interfaces with the device
m zero or more STREAM modules between them

a Each module contains a read queue and a write queue
@ Message passing is used to communicate between queues

I/O System Interfaces Device Driver Kernel Data Structures Buffers

F. Bellosa — Betriebssysteme WT 2016/2017 32/43

The STREAMS Structure

user process

stream head

]

modules

|

read queue | write queue
| }

| read queue | write queue
f I

‘ read queue | write queue
[}

read queue | write queue

driver end

1/O System

F. Bellosa — Betriebssysteme

Device Driver

Interfaces

Kernel Data Structures

WT 2016/2017

Buffers

33/43

I/0 Buffering

a Reasons for buffering
a Otherwise threads must wait for 1/0 to complete before proceeding
m Pages must remain in main memory during physical I1/O
a Block-oriented
a information is stored in fixed sized blocks
m transfers are made a block at a time
m used for disks and tapes
a Stream-oriented
a transfer information as a stream of bytes
a used for terminals, printers, communication ports, mouse and most other
devices that are not secondary storage

1/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa — Betriebssysteme WT 2016/2017 34/43

No Buffering

a Process reads/writes a device a byte/word at a time

1/O System

Each individual system call adds significant overhead
Process must wait until every 1/O is complete
Blocking/Interrupt handling/unblocking adds to overhead
Many short CPU phases are inefficient, because

a overhead induced by thread_switch

a poor cache and TLB usage

Interfaces Device Driver Kernel Data Structures

User Level Buffering Single Buffer Double Buffer
F. Bellosa — Betriebssysteme WT 2016/2017

Buffers
Circular Buffering
35/43

User Level Buffering (1)

Operating System User Process

1/0 Device

No buffering in OS
a Task specifies a memory buffer that incoming data is placed in until it
fills

a Filling can be done by interrupt service routine
a Only one system_call and block/unblock per data buffer
a More efficient than “NO BUFFERING”

1/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering
F. Bellosa — Betriebssysteme WT 2016/2017 36/43

User Level Buffering (2)

a Issues
a What happens if buffer is currently paged out to disk?

a You may loose data while buffer is paged in
a You could lock/pin this buffer (needed for DMA), however, you have to trust the
application programmer, that she/he is not starting a denial of service attack
a Additional problems with writing?
a When is the buffer available for re-use?

1/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa — Betriebssysteme WT 2016/2017 37/43

Single Buffer (1)

Operating System User Process
1/0 Device ln Mave

Single buffering

m User Process can process one block of data while next block is read in

m Swapping can occur since input is taking place in system memory, not
user memory

m OS keeps track of assignment of system buffers to user processes

1/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa — Betriebssysteme WT 2016/2017 38/43

Single Buffer (2)

a Stream-oriented

a Buffer is an input line at time with carriage return signaling the end of the

line
a Block-oriented
a Input transfers made to system buffer

a Buffer moved to user space when needed
m Another block is read into system buffer

I/O System Interfaces Device Driver Kernel Data Structures
User Level Buffering Single Buffer Double Buffer

F. Bellosa — Betriebssysteme WT 2016/2017

Buffers
Circular Buffering
39/43

Single Buffer Speed Up

a Performance Model:
a T = transfer time from device
m C = copying time from system- to user-buffer
a P = processing time of complete buffer content
a Processing and transfer can be done in parallel
a Potential speed up with single buffering:

T+P
max{T,P}+C

w What happens if system buffer is full, user buffer is swapped out, and
more data is received?
a Loose characters or drop network packets

1/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa — Betriebssysteme WT 2016/2017 40/43

Double Buffer

Operating System User Process

Move

C

I1/0 Device

m Use 2 system buffers instead of 1 (per user process)
m User process can write to or read from one buffer while the OS empties
or fills the other buffer

m Speed up with double buffering:

T+P
max{T,P + C}

1/0 System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering
WT 2016/2017 41/43

F. Bellosa — Betriebssysteme

Timing Diagram for Double Buffering

time

AN AN s

Analysis: The slower I/O-device is busy the whole input-period, thus
additional buffers are not needed (in this case).

I/O System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering

F. Bellosa — Betriebssysteme WT 2016/2017 42/43

Circular Buffering

a Double buffering may be insufficient for really bursty traffic situations:

a Many writes between long periods of computations
a Long periods of computations while receiving data
a Might want to read ahead more than just a single block from disk

Operating System User Task

In [] Move
IO Device E "]

[]

m Single-, double-, and circular-buffering are all bounded

— Buffer producer-/consumer problems

1/0 System Interfaces Device Driver Kernel Data Structures Buffers
User Level Buffering Single Buffer Double Buffer Circular Buffering
WT 2016/2017 43/43

F. Bellosa — Betriebssysteme

	I/O System
	I/O System
	Device Management
	I/O Hardware
	Memory-Mapped I/O
	I/O Techniques
	DMA Transfer

	Interfaces
	Application I/O Interface
	Kernel I/O Interface
	I/O Software Layers

	Device Driver
	Kernel Data Structures
	Buffers
	User Level Buffering
	Single Buffer
	Double Buffer
	Circular Buffering

