

Betriebssysteme

Operating System Structures

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) - OPERATING SYSTEMS GROUP

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Monolithic Systems

Operating System Structures

Monolithic Systems: Pros and Cons

Advantages

- Well understood
- Easy access to all system data (they are all shared)
- Cost of module interactions is low (procedure call)
- Extensible via interface definitions
- Disadvantages
 - No protection between system and application
 - Not stable or robust
- Examples
 - uCLinux, PalmOS, VxWorks, OSEK/VDX, eCos

Layered Systems

- System is divided into many layers (levels)
 - Each layer uses functions (operations) and services of lower layers
 - Bottom layer (layer 0) is hardware
 - Easier migration between platforms
 - Easier evolution of hardware platform
 - Highest layer (layer N) is the user interface
 - Lower layers implement mechanisms
 - Upper layers implement policies (mostly)

Layered Systems: Pros and Cons

Advantages

- Each layer can be tested and verified independently
- Correctness of layer N only depends on layer N-1
- → Simpler debugging/maintenance
- Disadvantages
 - Just unidirectional protection
 - Mutual dependencies (e.g., calls between process, memory and file management) prevent strict layering
 - Need to reschedule processor while waiting for paging
 - May need to page in information about tasks
 - Memory would like to use files for its backing store
 - File system requires memory services for its buffers
- Examples
 - THE (Dijkstra), Multics(GE), VOCOS(EWSD)

Monolithic Kernels

Operating System Structures

Monolithic Kernels: Pros and Cons

Advantages:

- Well understood
- "Good" performance
- Sufficient protection between applications
- Extensible via interface definitions and static/loadable modules
 - Uses object-oriented approach
 - Each core component is separate
 - Each talks to the others over known interfaces
 - Each is loadable as needed within the kernel

Disadvantages:

- No protection between kernel components
- Side-effects by undocumented interfaces
- Complexity due to high degree of interdependency
- Examples
 - Linux, Solaris

Solaris Modular Approach

Approaches tackling Complexity and Fault Isolation

- Safe kernel extensions
 - SPIN safe programming language (Modula 3) @ U of Washington
 - Spring OO design @ SUN Microsystems
 - VINO sandboxing @ Harvard

Application	• • •	Application			
Protected Area					
File System	Protocol Code				
Device Driver	Device Driver				
Hardware					

Exokernel@MIT

- Kernel offers multiplexing of raw HW
- All other control is done at application level
- Microkernels
 - MACH @ CMU, L4 @ KIT, EROS, Pebbles, QNX Neutrino

Microkernel Systems

Operating System Structures

MACH Microkernel

Architectural Cost Monolithic vs. Micro-Kernel

Operating System Structures

Microkernels: Pros and Cons

Advantages:

- Easier to test/prove/modify
- Improved robustness & security (each system component in user level is protected from itself)
- Improved maintainability
- Coexistence of several APIs
- Natural extensibility

(add a new server, delete a no longer needed old server)

Disadvantages:

- Additional decomposing
- Communication (IPC-) overhead \rightarrow low performance
- Bad experiences (2 B\$ loss) with IBMs Workplace OS (1991-1995)
 1 kernel based on Mach 3.0 for OS/2, OS/400, AIX, Windows, ···

Virtual Machines

- A virtual machine takes the layered approach to its logical conclusion. It treats hardware and the operating system kernel as though they were all hardware
- A virtual machine provides an interface *identical* to the underlying bare hardware.
- The operating system host creates the illusion that a process has its own processor and (virtual memory)
- Each guest is provided with a (virtual) copy of the underlying computer

Operating System Structures

Virtual Machines Benefits

- Multiple execution environments (different operating systems) can share the same hardware
- Protect from each other
- Some sharing of file can be permitted &controlled
- Communmicate with each other & other physical systems via networking
- Useful for development, testing
- Consolidation of many low-resource use systems
- "Open Virtual Machine Format"(OVF), allows a VM to run within many different virtual machine (host) platforms

Example: VMware Architecture

applic	cation	application	application	application	
		guest operating system (free BSD) virtual CPU virtual memory virtual devices	guest operating system (Windows NT) virtual CPU virtual memory virtual devices virtualization layer	guest operating system (Windows XP) virtual CPU virtual memory virtual devices	
	↓ ↓				
host operating system (Linux)					
CPU memory I/O devices					

Operating System Structures

Para-Virtualization

- Presents guest with system similar but not identical to hardware
- Guest must be modified to run on paravirtualized hardware (e.g., XEN)

Guest can be an OS, or in the case of Solaris 10 applications

Operating System Structures

Solaris 10 with 2 Containers

user programs system programs CPU resources memory resources	user programs system programs network addresses device access CPU resources memory resources	user programs system programs network addresses device access CPU resources memory resources			
	zone 1	zone 2			
global zone	virtual platform device management				
	zone management				
Solaris kernel					
network addresses					
device device					

Operating System Structures