
Operating Systems 2016/17
Tutorial-Assignment 5

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Question 5.1: Scheduling Basics

a. What is the purpose of scheduling?

Solution:
The purpose of scheduling is to find a mapping of processes to resources, so that each
process will eventually get the resources it needs. Normally, scheduling tries to maximize
some quality metrics, such as the resource utilization. In this assignment, we will focus on
CPU scheduling—that is, mapping of processes/threads to CPUs.

b. What is the difference between a long and short-term scheduler?

Solution:
The long-term scheduler is responsible for selecting the processes that are brought into the
ready queue. The long-term scheduler is invoked very infrequently (seconds/minutes) and
decides which jobs to load into memory and prepare for execution. Long-term schedulers
usually can be found on job-processing systems such as the IBM mainframe, but not on
regular desktop installations.

The short-term scheduler selects the next process that is allowed to run on the CPU from
the ready queue. It is invoked very frequently (multiple times per second) and must be
optimized for quick decisions. An O(1) scheduler is thus preferable and standard in modern
operating systems.

c. Consider an operating system that supports the five task states “new”, “running”, “rea-
dy”, “waiting”, and “terminated”. Depict the possible state transitions and the events
that cause them.

Solution:

1



d. What quantitative metrics/criteria can be used to estimate the quality of a scheduling
policy?

Solution:

Processor utilization: Percentage of time that a processor is not idle.

Throughput: Number of processes/threads completed per unit of time.

Turnaround time: Time from submission of a process/thread to its completion — inclu-
des the time spent waiting in various queues and the time actually running on a CPU.

Waiting time: Time a process/thread spends in the ready queue.

Response time: Time from the submission of a request until the first response is produ-
ced. (e.g., key press to the begin of the console echo or submission of a job to the first
time it is dispatched)

e. What kind of hardware support is required for an operating system that implements a
non-cooperative scheduling policy?

Solution:
For non-cooperative scheduling, the operating system must be able to interrupt a running
thread (most probably executing in user mode). As the operating system cannot regain
control by itself, hardware support in the form of interrupts is needed. Theoretically, any
external interrupt (caused by some device) is suitable, as interrupts always return con-
trol to the operating system. In order to ensure interrupts (and thus OS invocations) at a
constant rate, one normally employs a special timer device that can be programmed to ge-
nerate interrupts periodically. Whenever such an interrupt “fires”, the OS regains control
and can select another thread to run next.

f. What are common values for the length of a timeslice?

Solution:
Common timeslice lengths range from about 2 ms to 200 ms.

Configuring Windows to prefer foreground processes for example gives a timeslice length
of 20 ms – 30 ms (depending on the hardware clock). This is the default on client versions.
The server version is configured to prefer background processes by using a timeslice of
120 ms – 180 ms.

The Linux completely fair scheduler uses dynamic timeslice lengths derived from the num-
ber of ready processes, the priority (nice value) of the process to be scheduled, and adjust-
able parameters, in a complex way that tries to balance responsiveness with overhead.

g. Discuss pros and cons of choosing a short timeslice length vs. choosing a longer times-
lice length.

Solution:
The longer a timeslice is, the fewer context switches per time unit are required. As context
switches require a certain overhead (entering the kernel, selecting a new process to run,
switching address spaces if necessary, . . . ), reducing the number of context switches can
help to improve the throughput. However, making timeslices too long will negatively affect
the responsiveness of the system: Each process will run for a relatively long time until it
will be preempted, and consequently ready processes have to wait longer until they are
allowed to run again.

2



Question 5.2: Scheduling Policies

a. How does SJF scheduling work? What is the difference between preemptive and non-
preemptive SJF?

Solution:
SJF always selects the job with the shortest remaining time next. Instead of considering
the total time to completion–which is hard to determine for many applications–, the (esti-
mated) length of the next CPU-burst can be considered.

A preemptive SJF scheduler will make a new scheduling decision periodically and when a
new process arrives in the ready queue: If the length of the next CPU burst of the new pro-
cess is shorter than the remaining length of the current process, the new one is scheduled.
With a non-preemptive SJF scheduler, a job always runs until its CPU burst ends.

b. What is the basic idea of priority scheduling?

Solution:
With priority-based scheduling, each process is assigned a priority, and out of all ready
processes, the one with the highest priority is chosen. A second scheduling policy is nee-
ded if there are multiple ready processes with the same priority; these processes can for
example be scheduled using round robin scheduling.

c. What is the major problem of priority-based algorithms? What is a possible solution?

Solution:
The main problem of priority-based scheduling algorithms is starvation: A process won’t
be able to run as long as there is at least one process with a higher priority.

To weaken the effects of starvation, an aging policy can be employed by which the priority
of processes is increased that have not run for a certain amount of time. This technique is
implemented in the Windows thread scheduler.

d. Explain the multilevel feedback queue scheduling algorithm. What kind of processes can
be found in the high-level queues, what kind of processes sink to the lower-level queues?

Solution:
As the name suggests, multilevel feedback queue scheduling uses multiple scheduling
queues with different characteristics. Processes will be moved between queues, depen-
ding on their runtime behavior. Processes are always taken from the highest non-empty
queue. Processes in a higher queue get shorter timeslices than ones in a lower queue. If a
process fully uses its timeslice it descends to the next-lower queue. As a consequence, only
I/O intensive processes will remain in the highest queue. As I/O-intensive processes have
short CPU-bursts, it is preferable to schedule them first, supplying jobs for the I/O devices,
which can work asynchronously. CPU-bound processes will descend to lower-level queues
getting longer timeslices.

e. Describe the idea of lottery scheduling.

Solution:
With lottery scheduling, each process is assigned a specific number of lottery tickets. When
the scheduler is invoked, it randomly chooses one of the tickets, and the process that owns
it is allowed to run.

3



f. Enumerate possible advantages of lottery scheduling over “classical” priority-based sche-
duling algorithms.

Solution:

No starvation If one assumes that each process is granted at least one ticket and that the
scheduler picks numbers uniformly distributed, each process will be allowed to run
sooner or later. This is not ensured with (static) priorities, where low-priority processes
will never run if there is always at least one higher-priority process runnable.

CPU time Lottery scheduling can also be used to grant each process a specific amount of
CPU time, simply by assigning an according number of tickets: If the scheduler has
a total of 100 tickets and a process shall get 20% of the CPU time, it is assigned 20
tickets.

Hierarchical scheduling Lottery scheduling allows a hierarchical distribution of CPU ti-
me. For example, each user can be assigned a certain amount of tickets, and the user
can distribute these tickets among his applications.

Ticket donation Another interesting feature of lottery scheduling is that a process could
be allowed to lend its tickets to another. This is especially useful in a client/server
scenario. Whenever a client sends a request to a server, it lends its tickets to the
server so that the server will run when the client normally would. Consequently, the
client (and not the server) is accounted for the CPU time the server requires to process
the client’s request.

4


