
Operating Systems 2016/17
Tutorial-Assignment 11

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Question 11.1: Hardware- vs. Software-Walked Page Tables

a. What’s the difference between the use of hardware-walked page tables and software-
walked page tables? How does this relate to TLBs?

Solution:
Hardware-walked page tables differ from software-walked page tables in the way TLB
misses are handled.

If an address (vpn, offset) needs to be translated to a physical address, the hardware first
checks whether ‘vpn’ has a valid mapping entry (vpn, pfn) in the TLB. If such an entry
is found, the physical frame number ‘pfn’ is taken from the TLB and address translati-
on finishes (fast path). Otherwise, the page table must be consulted to find the correct
mapping.

Hardware-walked page tables are walked in hardware, that is, the MMU parses the page
table to lookup the mapping from ‘vpn’ to a ‘pfn’. With two-level page table, the hardware
first consults the page directory and extracts a pointer (physical address) to the page table
in charge of the requested virtual page. Then the hardware consults this page table to
determine the frame number assigned to the requested page. If either the page directory
entry or the page table entry are marked as invalid, a page fault is raised and a software
routine must resolve the fault by either installing an appropriate mapping (by loading the
required page table or page into a physical memory frame, updating the page directory or
table, and restarting the faulting instruction) or by aborting the faulting application (e.g.,
if the page requested is defined to be inaccessible in this application’s address space). If
the hardware finds a valid entry in the page table, it updates the TLB and restarts the
faulting instruction.

Software-walked page tables on the other hand consult a software exception handler for
every TLB miss: As soon as the hardware finds no matching entry for a requested page in
the TLB, it raises a TLB fault exception. The kernel routine handling this fault must then
walk the page table in software and load the mapping found there into the TLB (using
privileged instructions). If no (valid) mapping for the requested page is found in the page
table, the TLB miss handler calls the page fault handler routine to resolve this (again either
by installing a mapping or by terminating the application).

b. What difference can you make out in the contents of software-walked vs. hardware-
walked multi-level page tables?

Solution:
Besides the physical address of the next-level pages tables or the desired page (frame),
page tables also provide some control bits, indicating whether the physical address is va-
lid, whether the page has been modified, whether it may be written to and/or read from
and/or executed, etc.

Although hardware-walked and software-walked page tables need to store the same in-
formation, software-walked tables can be structured/defined by the OS designer whereas
hardware-walked page tables need to have a fixed layout as requested by the hardware.
In the context of page fault handling, software-walked page tables are thus adaptable to
the needs of the OS: You are free to put in all the information you need, structured in the
best possible way.

1



Hardware-walked page tables on the other hand somewhat limit the OS designers to what
they can store in them. For advanced features such as shared memory pages or copy-on-
write, additional structures might be required.

c. Under what circumstances are TLB miss handlers or page fault handlers invoked?

Solution:
When the TLB does not contain a valid mapping for a requested page, a TLB miss exception
is raised iff the hardware does not handle TLB misses by itself (i.e., with software-walked
page tables; systems with hardware-walked page tables never raise TLB miss exceptions).

Similarly, a page fault handler is invoked if the page table does not contain a valid map-
ping for the looked up address. With hardware-walked page tables, the MMU performs the
lookup and triggers an exception to signal a page fault to the OS. With software-walked
page tables, the OS kernel parses the page table and performs a function call to the page
fault handler (there are no page fault exceptions on such systems).

In addition to the events above, invalid accesses to mapped pages also raise exceptions:
If you try to write to a page which is defined to be read-only, the hardware translation will
indicate this: With software-walked page tables, the TLB might contain an entry (vpn, pfn,
read-only); when a writing access to ‘vpn’ occurs, the hardware will signal a TLB write
fault (usually a different exception than the TLB miss above), indicating that a mapping
was found, but the desired access is forbidden. Similarly, a TLB read or execute fault will
be raised if a page is read or executed, for which reading or executing is not allowed.

With hardware-walked page tables, you usually receive a mere page fault exception re-
gardless of whether the hardware could not find a valid mapping at all or whether the
desired access type is not allowed. In this case, the page fault handler must inspect the
page table and the information about the page fault that the hardware provided to discern
the two cases.

Question 11.2: Page Fault Handling

a. Explain the terms demand-paging and pre-paging. What are the respective strengths
and weaknesses?

Solution:

Demand-Paging Loads pages into memory only when a page fault occurs, that is, when
the data contained in the page is actually needed. This strategy can lead to a high
number of page faults when an application starts, but ensures that only data that will
be needed resides in memory.

Pre-paging Speculatively loads pages that might be needed in the future, thus potentially
reducing the number of page faults. In addition, reading large chunks of data from a
hard disk is more efficient than reading only single blocks, so I/O throughput can be
improved. It might however happen that pages are loaded that will never be used. In
that case, not only the memory occupied by such a page is wasted, but also the time
and I/O bandwidth that was used to bring the page into memory.

2



b. When a thread touches a page for the first time with demand-paging, a page fault will
occur. Classify the page fault according to where the data for the unmapped page has to
be fetched from by the page fault handler.

Solution:

File-backed The contents is stored in a file. This is the
case with, for example, the program code (applicati-
on binary, libraries), initialized data segments as well
as memory-mapped files in general. The page fault
handler has to read the contents for the page from
disk.

Zero-Fill The page belongs to a generic memory area.
This includes pages for stacks, heaps, uninitialized
data sections and application-specific memory are-
as (e.g., for large buffers). These pages are zero-filled
when first mapped. Zero-filling such pages is desi-
rable as otherwise information from the application
that ‘owned’ the backing frame before might leak to
the faulting application (i.e., we would have a covert
channel, these should be avoided).

No Access The access might be directed to a page that
should not be accessed at all (neither stack nor code
nor data nor heap nor . . . ). In this case the page fault
handler would not grab a frame at all, so there is no
contents to fill in.

Program Code

Kernel Address
Range

User Address 
Range

Read-only Data

Stack

Heap

Large Buffer

Zero-Fill

File-Backed

/tmp/myfile

No Access

No Access

No Access

No Access

No Access

c. If the process has been running for some time, modifying data along its way, there is
one additional case that needs to be covered on a page fault. Which?

Solution:
If the OS at some time decided to steal a frame from the process, and if this frame was
modified before (e.g., the frame was occupied by a writable data segment), the frame had
to be written to disk somewhere (e.g., swap file or partition), but not back into the program
binary from which it might have originated. The page fault handler would then have to
allocate a new frame, retrieve the previously swapped out frame from the swap area, and
load it into the newly allocated frame.

d. Discuss which information is required by the page fault handler to correctly setup (or
restore) the contents of accessed pages.

Solution:
For each page, you need to know:

(a) If it may be accessed at all (i.e., if there should be some data in that page) and how
(readable, writable, executable, . . . ).

(b) Where the most recent version of the page content can be found (in the binary, in
some memory mapped file, on the swap device, or nowhere, as the page is used to
hold uninitialized data such as stacks or .bss ELF sections).

(c) Precise information, where in the binary/memory-mapped file or swap area the frame
is to be grabbed from (e.g., some kind of file offset).

3



e. Can you reuse page table entries to store some of this information? Is it a good idea?

Solution:
Yes, for example, for pages that are swapped out to disk (the valid bit in their page table
entry is set to 0), you may store the offset within the swap device in the field usually used
for the physical frame number. You might need an additional bit in the page table entry
to discern swapped out pages from pages that are to be retrieved from the original file
(i.e., if you do not simply write all to-be-replaced frames to the swap area, but recognize
unmodified file-backed pages and simply drop them).

This approach is not possible when using inverted page tables, as these only store in-
formation on pages currently mapped to physical memory. Pages that are not resident in
memory are not contained in the inverted page table at all.

Reusing the page table entries (PTEs) is a good idea, as you need to access the PTE any-
way during page fault handling (at least to write the new mapping information, probably
also to check the current access permissions). If you can locate all information to resolve
a page fault in the PTE, you benefit from spatial locality (good cache usage, possibly less
TLB entries wasted).If you need to parse an additional structure to find the required in-
formation, you pollute the cache and TLB, resulting in worse overall system/application
performance.

f. What is Copy-on-Write? How can it be implemented?

Solution:
Copy-on-Write is a technique that avoids unnecessary copies of memory pages when a co-
py of some region of an address space (or the entire address space) is created. The basic
idea is that the original region and the copied region can map to the same physical frames
as long as they are not modified. Frames are only copied when they are modified. The
probably most common example of using copy-on-write is the fork() system call. When
a process (the parent) calls fork(), a child process is created, which is an exact copy of
the parent (apart from some exceptions). Instead of copying all the memory that the parent
occupies, it suffices to copy its page table and to mark all pages as copy-on-write (this
implies that the pages must be marked as read-only) both in the parent and in the child
page table. From now on, both parent and child execute in separate address spaces, but
both address spaces share the same physical frames.

As soon as either parent or child tries to write to a page, a page fault will be raised (be-
cause all pages were marked as read-only) and the operating system can allocate a new
physical frame, copy the contents of the page to which the write access was performed,
and adapt the page table of either parent or child (but not both!) to map to the newly al-
located page. Both the original page and the newly allocated page can now be granted
write permissions, and the faulting instruction can afterwards be restarted. From now on,
parent and child have a separate copy of that page.

Process 1 Process 2RAM

AAAAAAA
AAAAAAA

AAAAAAA

Process 1 Process 2RAM

BAAAAAA
AAAAAAA

AAAAAAABAAAAAA

Process 1 tries to 
modify the page

OS creates copy
remaps, and retries write

4



g. Recap: Describe the steps necessary to handle a page fault in an application’s address
space.

Solution:
When a page fault occurs, the page fault handler first checks whether an access to the
appropriate page is legal or not. If it is not, the application will be terminated if it does not
define a handler. If the access is legal, the handler has to find and allocate a free frame.
If there is none, the page replacement algorithm is invoked, which chooses a frame whose
contents is written to disk and which can afterwards be reused for something else. The
page fault handler then has to load the correct contents into the frame: In some cases (e.g.,
a new frame for a growing stack or heap) it suffices to fill the frame with zeros, in other
cases, the correct contents have to be retrieved from disk (e.g., when the page was pre-
viously swapped out). Once the frame is filled with the correct data, the page fault handler
needs to adapt the page tables by inserting the new mapping and setting the valid bit.
In case of a SW-loaded TLB, the new mapping is also loaded into the TLB. The faulting
application can now resume its execution by retrying the faulted instruction (note however
that it is up to the kernel scheduler to choose the application that runs next).

Question 11.3: Page Replacement Basics

a. The pager of some systems tries to always offer a certain amount of free page frames to
improve paging. What is the basic idea behind such a pager?

Solution:
The key idea is that whenever a frame must be replaced with data from a different page,
its previous content should not have to be written back to disk first, which would drama-
tically increase the latency/duration of the page fault handling process. For this purpose,
the pager periodically writes back dirty (i.e., modified) pages to disk and marks them as
clean.

b. Describe the difference between a global and a local page replacement algorithm. Dis-
cuss the advantages and disadvantages of each of them.

Solution:
Global page replacement algorithms operate on all pages from all address spaces current-
ly registered with the system. If an application requests a new page (by means of a page
fault), a frame—potentially from a different application—is chosen according to the algo-
rithm’s policy, taken from its current owner and assigned to hold the requested page.

Local page replacement algorithms only operate on the frames assigned to the application
currently requesting another one (via a page fault), thus each application has a certain
number of frames allocated for it and fits its pages into them.

Pros and cons of local replacement strategies:

+ guaranteed number of frames available per application

+ smaller set of frames to select from, thus potentially faster replacement algorithm

– not easily adapting to changing memory demands of applications

– difficult selection of optimal number of frames per application

c. Does a virtual memory system implementing equal allocation require a global or a local
page replacement policy? Justify your answer.

Solution:
A local page replacement policy to keep the allocated shares equal.

5



d. What is thrashing? When does it occur?

Solution:
Thrashing refers to an extremely high paging activity of a process (or the entire system).
Thrashing occurs when the number of frames allocated to a process is too small even for
its “basic” execution. For example, consider a process that requires one code page and one
page for the stack. If only one frame is assigned to that process and local page replace-
ment is used, then every access to the stack causes the code page to be written to disk
and the stack page to be loaded, and the subsequent code access will cause the stack
page to be written to disk an the code to be fetched from disk again. It is obvious that
under these circumstances the process will hardly be able to make any progress.

e. What is the working set of a process? How can the working set be used to prevent thra-
shing?

Solution:
The working set of a process is the set of pages that had been accessed in the last ∆ page
references. If the operating system can make sure that the sum of the current working sets
of all processes Pi in the system is smaller or equal to the total number of available frames,
thrashing will not occur. Whenever the operating system detects that the sum of working
sets is too large, it can select processes to suspend completely. All frames of a suspended
process are written to disk and can be assigned to the other processes.

Question 11.4: Page Replacement Policies

a. A task has four page frames (0, . . . , 3) allocated to it. The virtual page number of each
page frame, the time of the last loading of a page into each page frame, the time of the
last access to the page frame, and the referenced (R) and modified (M ) bits of each page
frame are shown in the following table.

frame virtual page load time access time referenced modified
0 2 60 161 0 1
1 1 130 160 0 0
2 0 26 162 1 0
3 3 20 163 1 1

A pagefault to virtual page 4 occurs. Which page frame will have its contents replaced
for the FIFO, LRU, Clock and Optimal (with respect to the number of page replacements)
replacement policies?

For the Clock algorithm assume that the circular buffer is ordered ascending by load
time and that the next-frame pointer refers to frame 3.

For the Optimal algorithm use the following string for subsequent references:
4, 0, 0, 0, 2, 4, 2, 1, 0, 3, 2.

Explain the reason in each case.

Solution:

First-In First-Out (FIFO): Frame 3 will be replaced since it is the frame which has been
longest in memory.

Least Recently Used (LRU): Frame 1 will be replaced since it is the frame which has not
been accessed for the longest time.

6



Clock policy: Clear R in frame 3 (oldest loaded). Clear R in frame 2 (next oldest loaded).
Replace frame 0 (third oldest loaded) since it has R = 0.

Optimal: Frame 3 will be replaced since it is the frame that is accessed furthest away in
the future.

b. Evaluate stack, code, and heap as to how well you expect the LRU page replacement
policy to perform on them. Explain your opinion for each segment.

Solution:

• Stack best, it is used in a LIFO fashion and is dense

• Code is second, it is linear with loops and generally follows certain execution patterns

• Heap is last, it tends to be used in a more random access fashion than e.g., stacks

7


