
Operating Systems 2016/17
Assignment 5

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, November 28th, 2016 – 23:59

A new assignment will be published every week, right after the last one was due. It
must be completed before its submission deadline.

The assignments must be filled out online in ILIAS. Handwritten solutions are no
longer accepted. You will find the online version for each assignment in your tutorial’s
directory. P-Questions are programming assignments. Download the provided tem-
plate from ILIAS. Do not fiddle with the compiler flags. Submission instructions can
be found on the first assignment.

In this assignment you will get familiar with scheduling basics and policies.

T-Question 5.1: Scheduling

a. Why are the scheduler and dispatcher good examples for the distinction between
policy and mechanism? 1 T-pt

b. Briefly explain the difference between cooperative and preemptive scheduling? What
problem does preemptive scheduling solve? 2 T-pt

c. With lottery scheduling, every process is assigned a certain number of tickets. To
make a scheduling decision the lottery scheduler randomly chooses a ticket and
selects the process that owns the ticket. Briefly explain how lottery scheduling can
be implemented without allocating any dedicated objects per ticket such as structs,
integers, or array elements. 2 T-pt

d. Give the scheduling sequence (e.g., PX , PY , PZ ,. . . ) for the following processes with
round robin scheduling and a timeslice length of 1 time unit. The scheduler first
adds new processes (if any) to the tail of the ready queue and then inserts the
previous process to the tail (if it is still runnable). 2 T-pt

Process Burst length Arrival time
P1 3 0
P2 5 2
P3 2 4

e. Calculate the average waiting time for the example in 5.1d. 1 T-pt

1



P-Question 5.1: Priority Scheduler

Download the template p1 for this assignment from ILIAS. You may only modify
and upload the file scheduler.c.

Priority scheduling assigns each scheduling entity (i.e., a process or thread) a prio-
rity. For each priority the scheduler has a ready queue into which ready threads
with the respective priority are enqueued. The scheduler always selects the first
thread from the ready queue of the highest priority. If multiple threads have the
same priority (i.e., a queue contains more than one thread), the scheduler employs
round robin scheduling within the queue.

Refer to the lecture slides for more details. In this question you will write your own
priority scheduler.

a. The queue implementation in the template already contains the necessary structu-
res to represent a queue (Queue) and its elements (QueueItem). The queue contains
a head and a tail pointer to make it possible to reference both, the first and the
last item, in O(1). Implement the functions to add and remove elements. You can
use the following guideline: 2 P-pt

enqueue Adds a new item to the queue’s tail.

• Allocates a new QueueItem with malloc (silently fail on errors)
• Assigns the supplied data to the new item
• Adds the new item to the tail of the queue by updating the head (if necessa-

ry) and tail pointers as well as the next pointer of the current tail element
(if any)

dequeue Removes an item from the queue’s head.

• Returns -1 if the queue is empty
• Otherwise, removes the first item from the queue’s head by updating all

necessary pointers
• Frees the item with free

• Returns the data field of the removed item (Caution: Remember that you
cannot access the item anymore after freeing it!)

Hints: If the queue is empty head should be NULL. You may also set the next pointer
of the last element to NULL.

Item 
1

Item 
2

Item 
3Head Tail<NULL>

Head <NULL> Tail<UNDEFINED>a)

b)

Abbildung 1: Example queue. a) Empty queue b) Queue with 3 items

void _enqueue(Queue *queue, int data);
int _dequeue(Queue *queue);

2



Note to a): It is important that you are able to solve this type of straight C
programming questions without a big hassle. Otherwise, you won’t be able to
get OS related programming tasks to fly in an appropriate time to master the
certificate exam. If you have a hard time getting the queue to work, consider
investing some time reading one of the many good books on the C program-
ming language (e.g., Brian W. Kernigham and Dennis M Ritchie Programming
in C). You won’t regret it!

b. Implement the event handler functions, which set the supplied thread’s state and
if necessary add the thread to the appropriate ready queue. Set the QueueItem’s
data field to the thread’s id.

Hints: Take a look at the lecture and the comments in the template for details an 2 P-pt
thread state changes.

void onThreadReady(int threadId);
void onThreadPreempted(int threadId);
void onThreadWaiting(int threadId);

c. Implement the priority scheduling policy with prevention of starvation. Your sche-
duling function should fulfill the following requirements: 4 P-pt

• Find the ready queue with the highest priority that contains a ready thread

• Removes the first thread from the queue, updates its state and returns its
thread id

• Applies the following starvation prevention:
If the scheduler selects threads with a certain priority more then 5 times wi-
thout selecting a thread with a lower priority, the scheduler resorts to the next
lower priority queue that (1) is not empty and (2) does not break this starvati-
on rule (i.e., exceeding the 5 times maximum without scheduling lower priority
threads).

Hints: The simplest solution to the starvation prevention will use a recursive ap-
proach to determine the right queue for thread selection.

int scheduleNextThread();

Total:
8T-pt
8P-pt

3


