
Operating Systems 2016/17
Assignment 11

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, January 23th, 2017 – 23:59

A new assignment will be published every week, right after the last one was due. It
must be completed before its submission deadline.

The assignments must be filled out online in ILIAS. Handwritten solutions are no
longer accepted. You will find the online version for each assignment in your tutorial’s
directory. P-Questions are programming assignments. Download the provided tem-
plate from ILIAS. Do not fiddle with the compiler flags. Submission instructions can
be found on the first assignment.

In this assignment you will dive deeper into page fault handling and page replacement.

T-Question 11.1: Paging
Consider a system that translates virtual addresses to physical addresses using
two-level page tables in hardware. Every page table comprises 1024 entries, with
each entry having a size of 4 bytes and providing read/write page protection as
presented in the lecture. The page size is 4096 bytes. The system neither possesses
a cache nor a TLB.

a. How many memory accesses are necessary to read a contiguous buffer of 8 MiB,
starting at offset 0, reading 4 bytes at a time. 1 T-pt

b. How many memory accesses are required if a TLB is added to the system? 1 T-pt

c. How can shared memory between two processes A and B be realized an the page
table level? 1 T-pt

d. How does the page protection in the PTE for a copy-on-write page need to be confi-
gured? Explain your answer! 1 T-pt

T-Question 11.2: Page Replacement
a. Consider a system with 4 page frames. Complete the mapping table for a process

that accesses pages in the given order if clock page replacement is used. Assume
the circular buffer of the clock to be in ascending order (i.e., frame 0, 1, 2, 3), the
clock hand to be positioned at frame 0 and the reference bit for page 0 to be set. 3 T-pt

frame V PN(t0) V PN(t1) V PN(t2) V PN(t3) V PN(t4) V PN(t5) V PN(t6)

0 3
1 1
2 0
3 6

Reference string for virtual page numbers (VPN): 4 1 2 0 3 5

b. What difficulty do you see when implementing the clock algorithm for systems that
allow shared memory? 1 T-pt

1



P-Question 11.1: Page Fault Handling

Download the template p1 for this assignment from ILIAS. You may only modify
and upload the file page faults.c.

Consider the same system and page table structure as used in the previous pro-
gramming question (P9.1). See the assignment 9 for more details.

In this question you will extend the software MMU for x86 paging from the last
assignment with a page fault handler. For simplicity reasons, the page fault handler
will only be called if a PTE is marked as invalid and not if the access check in the
MMU failed.

The template already provides structures to represent the virtual memory areas
(VMAs) of an exemplary address space as well as utility functions to find the right
VMA for a virtual address and to simulate the allocation of zero-filled and file-
backed frames. You will find the VMA definitions in the vmas variable.

For all questions you may assume that frames are always mapped at most once
(i.e., no shared memory).

a. Write a function that swaps out the page specified by the given virtual base address.
Your function should fulfill the following requirements: 3 P-pt

• Retrieves the page table entry for the supplied virtual base address.

• Calls storeOnDisk() to simulate the swap operation and get the resulting
offset of the page on disk

• Stores the disk offset in the PTE and marks the page as swapped out by setting
the appropriate bit via PAGE SWAPPED MASK. Updates the other bits as needed,
however, preserves the access bits defined in PRESERVED BITS ON SWAP.

• Returns 0 on success, -1 otherwise.

int swapOut(uint32_t virtualBase);

b. Implement the page fault handler that prepares and maps a frame depending on
the accessed page (and the corresponding VMA). Your implementation should fulfill
the following requirements: 4 P-pt

• Checks if the accessed page has been swapped out. In that case, simulates the
load from the swap by calling loadFromDisk() and updates the PTE accordin-
gly.

• Otherwise, checks what type of VMA the accessed page belongs to via getVMA()

and prepares and maps a new frame with getFilePage() or getZeroedPage(),
respectively. You can use mapPage() to establish the mapping. Be sure to spe-
cify the correct permissions.

• Returns 1 on success, -1 on any error, and 0 if the accessed address is not
part of a VMA and thus invalid.

int handlePageFault(uint32_t virtualBase, uint32_t pte);

Total:
8T-pt
7P-pt

2


