\‘ (I operating SYStems 20 16/ 17 Prof. Dr. Frank Bellosa
A Assignment 1 3 Dipl.-Inform. Marc Rittinghaus

Karlsruhe Institute of Technology

Submission Deadline: Monday, February 6th, 2017 - 23:59

A new assignment will be published every week, right after the last one was due. It
must be completed before its submission deadline.

The assignments must be filled out online in ILIAS. Handwritten solutions are no
longer accepted. You will find the online version for each assignment in your tutorial’s
directory. P-Questions are programming assignments. Download the provided tem-
plate from ILIAS. Do not fiddle with the compiler flags. Submission instructions can
be found on the first assignment.

In this assignment you will delve into the implementation of file systems.

T-Question 13.1: File System Implementation

a. What three kernel data structures are required to manage open files? Explain the

meaning of each. 3 T-pt
b. Why is the file name not stored in the inode? 1 T-pt
c. How does the file system determine if an inode and thus the blocks allocated to the

file can be deleted? 1 T-pt
d. What is the benefit of a file allocation table (FAT) compared to chained allocation? 1 T-pt

e. Explain the concept of indexed disk space allocation. What approach allows this
allocation type to represent very large files while still being efficient for small files? 2 T-pt

P-Question 13.1: File System Implementation

Download the template p1 for this assignment from ILIAS. You may only modify
and upload the file filesystem.c.

In this assignment you will write your own minimalistic FAT-like file system and
handle open files for it. The template comes with a disk image (test.image) that
has been formatted with the assignment’s file system.

The file system is fixed to manage 16 disk blocks with 32 bytes each and supports
only a single directory (the root directory). The root directory is stored within the
available 16 disk blocks, the header (FAT, etc.) is stored in front of the 16 blocks.
The file system uses the following on-disk organization, where the root directory
starts at block O:

Disk Image
A

(16 blocks & 32 byte w

N
4 A

L Root Directory Blocks
Contains per-file \ File data
metadata

Per-file meta information such as the file names and sizes are stored in the root
directory, whereas each entry in the directory represents a single file and has a
fixed size (reserving 8 bytes for the file name). Note that the root directory may not
be stored in contiguous blocks!

FS Header with FAT and
length of root directory

Open files are represented through open file handles that contain the current seek
pointer (i.e., the offset of the next byte to read from the file) and the corresponding
block.

You'll find all relevant data structures and sizes in the template’s header file. You
can use the command hexdump -C test.image to view a hex dump of the disk
image.

a. Write a function that maps the given full disk image into the address space of your
program using the mmap system call. Your function should provide access to the file
system through the FileSystem structure by casting and returning the address of
the image in memory after the call to mmap. Return NULL on any error. 2 P-pt

FileSystem xmapFileSystem(char xdiskFile);

b. Write a function that determines if more bytes can be read with a supplied open
file handle. Return O if not, 1 otherwise. 1 P-pt

int _hasMoreBytes (OpenFileHandle xhandle);

c. Write a function that reads the next byte from the file specified with the given open
file handle. Use the file allocation table to determine the next block, if you reach
the end of a block. Hints: Remember to adjust the file handle appropriately. 2 P-pt

char _readFileByte (OpenFileHandle xhandle);

d. Write a function that opens a file from the file system by name. Your function
should fulfill the following requirements: 3 Ppt

e Uses the provided handle to the root directory and the readrile method to
iterate over the root directory’s DirectoryEntry structures.

e Searches for the requested file name (case sensitive).

e Closes the root directory handle.

e Returns a new file handle for the requested file using openFileatBlock on

success, NULL otherwise.

Hints: When working with the root directory, consider it as a regular file whose
data are directory entries.

OpenFileHandle xopenFile(FileSystem xfs, char *name);
Total:

8T-pt
8P-pt

