Computergraphik

Vorlesung im Wintersemester 2013/14 Kapitel 6ü: Clipping, Teil 1

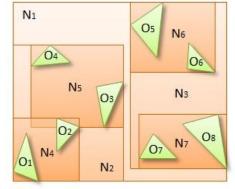
Prof. Dr.-Ing. Carsten Dachsbacher Lehrstuhl für Computergrafik Karlsruher Institut für Technologie

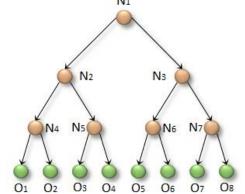
Organisatorisches

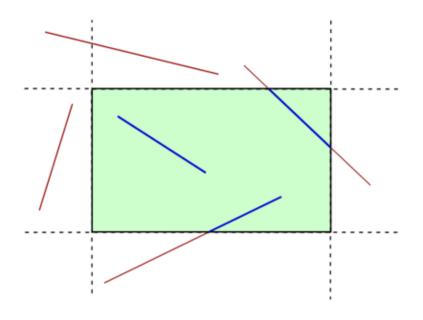
- Am 23.12. findet keine Übung statt
- Nächste Übung am 13.1.2014
- Übungsblatt 9 am 23.12.2013
- Übungsblatt 10 am 13.1.2014

Übersicht

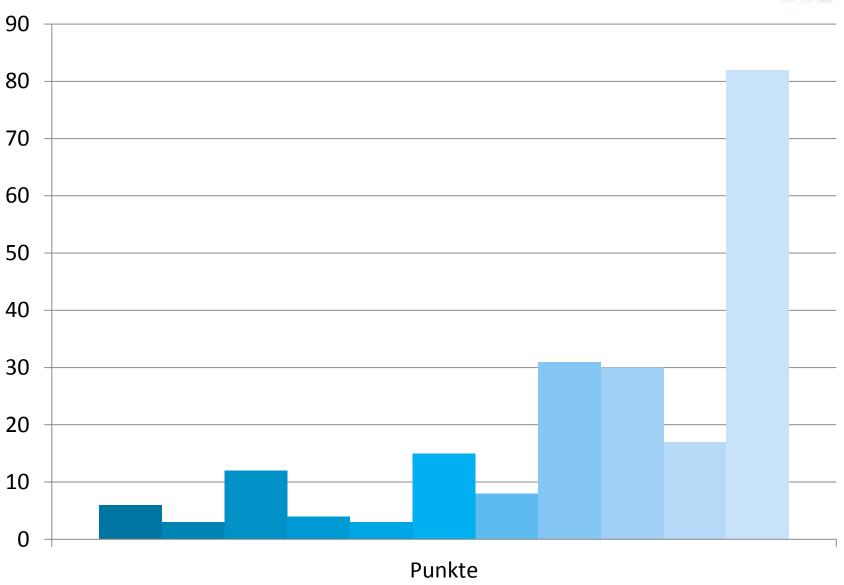
- Rückblick Blätter 6 und 7
- Übungsblatt 9 / Distributed Raytracing
- Bounding Volume Hierarchien
- Clipping Teil 1





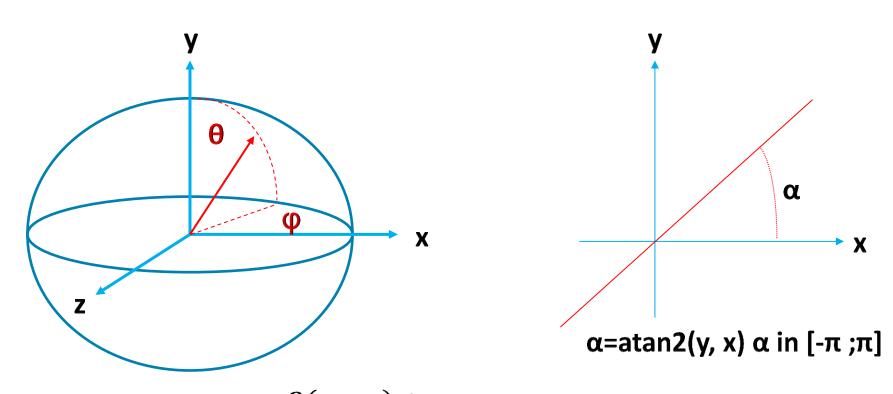


Ergebnisse ÜB 6



Übungsblatt 6

- Korrekturvorgehen leicht geändert, nicht abgegebene Dateien werden durch die leeren Dateien der Aufgabe ersetzt.
- Spherical mapping: Koordinatensysteme beachten, Beispiele im Netz (z.B. Wikipedia) haben andere Koordinatensysteme



$$oldsymbol{u} = rac{ ext{atan2}(oldsymbol{z}, -oldsymbol{x}) + oldsymbol{\pi}}{2oldsymbol{\pi}}$$
 , $oldsymbol{v} = rac{ ext{acos}\,oldsymbol{y}}{oldsymbol{\pi}}$

Übungsblatt 7

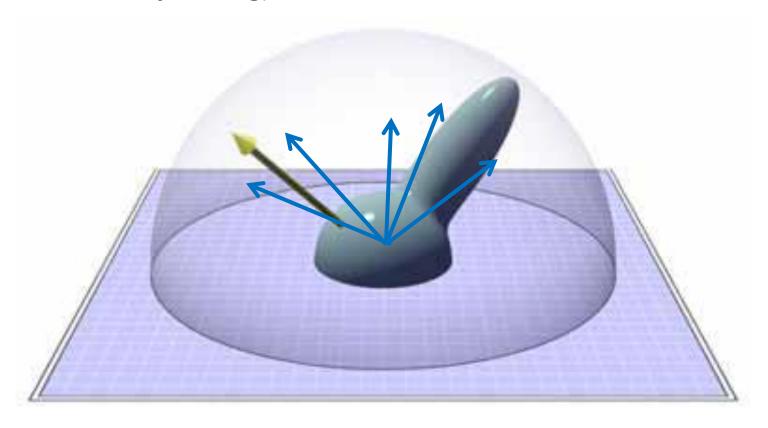
- Bestimmung des Footprints: achsenparalleles Rechteck
- Bestimmung des Mischfaktors beim Mip-mapping:
 - Beide Varianten volle Punktzahl (Footprint f):
 - $ightharpoonup t = \operatorname{frac}(\log_2 f)$
 - $t = \frac{f 2^l}{2^u 2^l}$

Übungsblatt Nr. 9

- Am 23.12.2013
- Abgabe am 6.1.2014
- Das Blatt ist optional, kann aber zur Verbesserung/Ausgleich dienen:
 - Es zählen nicht zu den 100% der Punkte
 - Aufgaben mit 0 Punkten können ausgeglichen werden
- Aufgabe: Implementieren Sie bis zu 3 der folgenden Effekte
 - Bewegungsunschärfe
 - Tiefenunschärfe
 - Weiche Schatten
 - Environment-Map Beleuchtung (Image-Based lighting)
 - Unscharfe Reflexion
 - Unscharfe Transmission
- Für jeden richtig implementierten Effekt 5 Punkt, max. 15 Punkte

Distributed Ray Tracing

- Bisher: immer nur ein Strahl weiterverfolgt
 - Ausname: (teil-)transparente Objekte
 - Kann viele Effekte nicht darstellen
- Abhilfe: mehrere zufällige Strahlen pro Schnittpunkt verfolgen (Distributed Ray Tracing)



Monte-Carlo-Integration

- Distributed Raytracing = Mittelwert über mehrere Strahlen
- Das ist ein Integral!

$$I = \int_{\Omega} f(\omega) \, d\omega$$

Lösen über Monte-Carlo-Integration:

$$I \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(\omega_i)}{p(\omega_i)}$$

Beispiel: Man möchte uniform über die Hemisphäre integrieren:

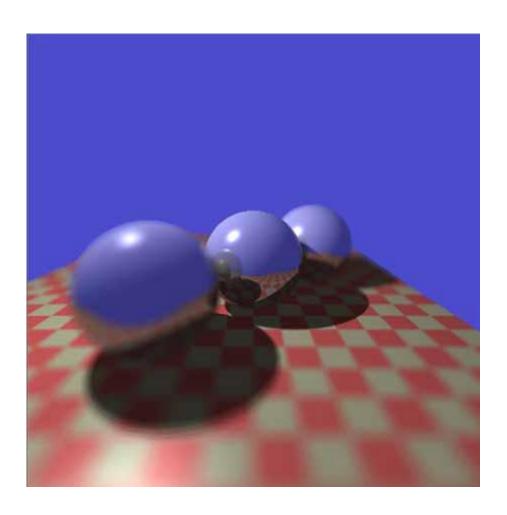
$$I \approx \frac{2\pi}{N} \sum_{i=1}^{N} f(\omega_i)$$

Bewegungsunschärfe

- Wichtig bei Animationen
- Berechne nicht nur Bild für festen Zeitpunkt, sondern an mehreren Zeitpunkten.
- Berechne dann Ausgabe als Mittelwert über die Zeitpunkte.
- Vgl. Belichtungszeit bei realen Kameras

Tiefenunschärfe

- Ermöglicht es, die Szenentiefe besser abzuschätzen.
- Nutze das Thin Lens Model statt dem Lochkameramodell
- Erzeuge mehrere Primärstrahlen und bilde den Mittelwert



Weiche Schatten

- ▶ Reelle Lichtquellen haben eine Ausdehnung → Weiche Schatten
- Erzeuge mehrere Schattenstrahlen zu zufällig gewählten Punkten auf der Flächenlichtquelle.
- Verschattung = #Unverschattet / #Verschossen

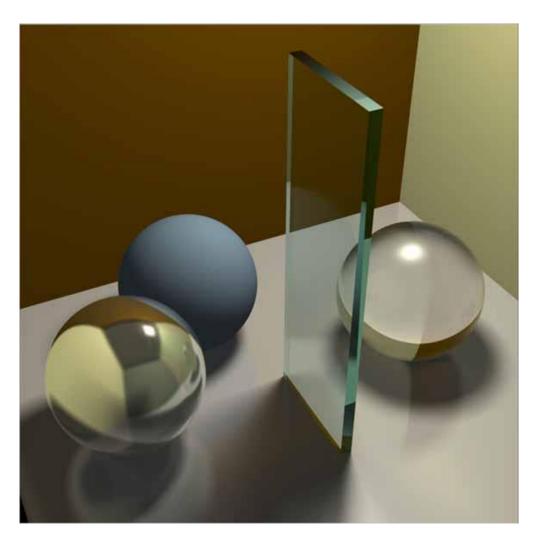
Umgebungsbeleuchtung

- Nutze Environment Map mit Kugelparametrisierung
- Erzeuge mehrere Schattenstrahlen
- Für unverschattete Strahlen greife mit der Strahlrichtung auf die Environment Map zu
- Lichtstärke ist der Wert der Environment Map

Tipp: Freie Environment Maps findet man auf http://www.openfootage.net

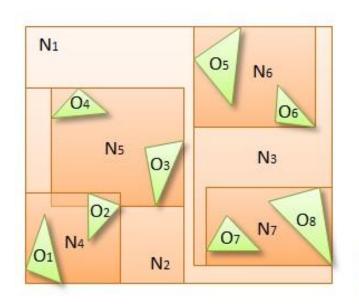
Unscharfe Reflexion / Transmission

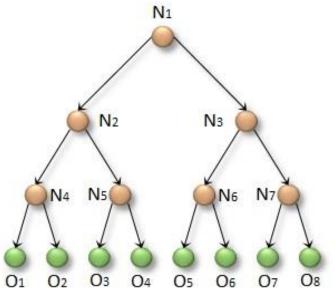
- Erzeuge mehrere zufällige Sekundärstrahlen
- Achtung: Strahlenbaum 'explodiert'



Bounding Volume Hierarchies

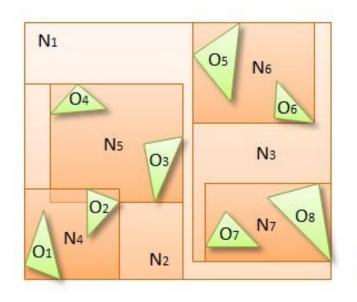
- Sichtbarkeitstests mit allen Primitiven ist langsam
- ▶ Idee:
 - Erzeuge Datenstruktur, die es ermöglicht viele Strahlschnitttests zu vermeiden
- Es gibt viele solcher Datenstrukturen
 - Kd-, BSP- oder Octree
 - Bounding Volume Hierarchie

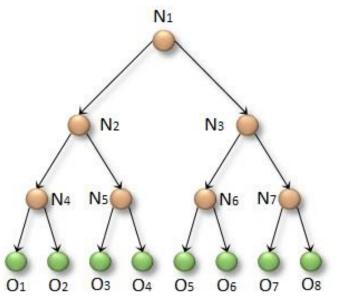




Bounding Volume Hierarchies

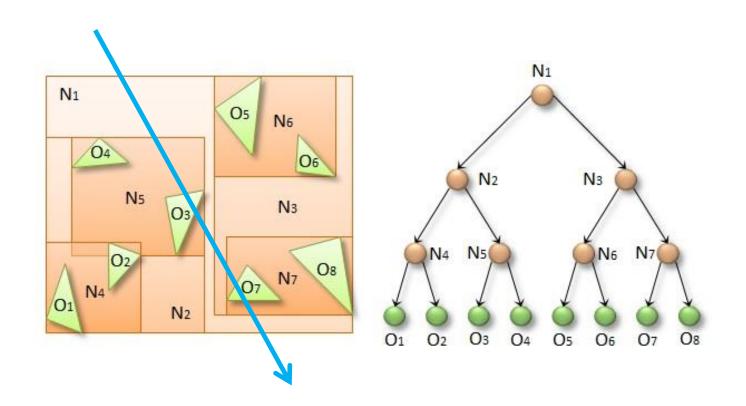
- Erzeuge Hierarchie von einhüllenden Volumen, z.B.
 - AABBs
 - Kugeln
- Teile die Primitive rekursiv in Teilmengen
 - Spatial Median oder Object Median
 - Surface Area Heuristik
- Teile entlang der Achse mit der größten Ausdehnung oder zyklisch





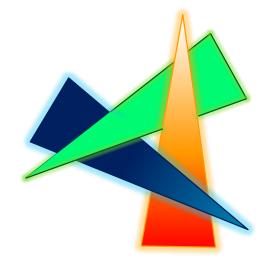
Traversierung

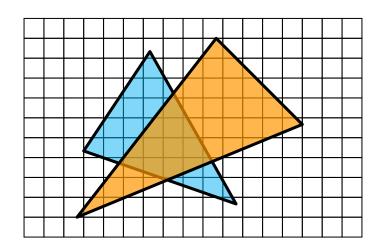
- Prüfe auf Schnitt mit BV der Wurzel
 - Steige rekursiv ab und prüfe BV der Kindknoten
 - Wenn Blattknoten: Prüfe alle zugehörigen Primitive
- Wichtig: Nicht den ersten gefundenen Schnittpunkt zurückgeben

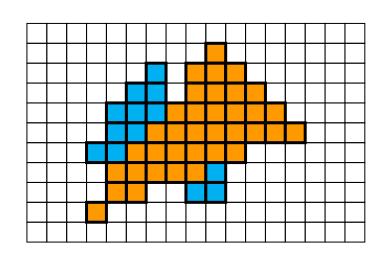


Clipping

- Clipping von Linien und Polygonen
 - \triangleright Cohen-Sutherland und α -Clipping (Teil 1)
 - Sutherland-Hodgeman (Teil 2)





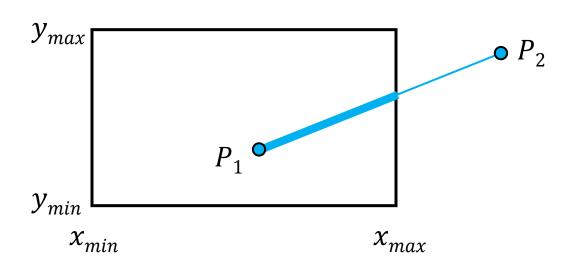


Clipping

- Clipping: Abschneiden von Linien/Polygon-Teilen die außerhalb des Bildschirms liegen (oder allg. außerhalb eines gewünschten Bereichs)
- warum ist Clipping wichtig?
 - Effizienz: zeichne nichts außerhalb des Bildschirms/View Frustums, keine Objekte hinter der Kamera (in 3D)
 - vermeide problematische Fälle bei 3D Projektionen (später mehr)
- wichtig nicht nur für Rasterisierung, beispielsweise auch für Constructive Solid Geometry, Boolsche Operationen in 2D und 3D
- unterschiedliche Ansätze
 - Clipping on-the-fly während der Rasterisierung
 - \triangleright z.B. Laufvariable für x-Achse beschränken auf $0 \le x \le$ Breite
 - besser: analytisches Clipping (dieses Kapitel)

Clipping von Linien

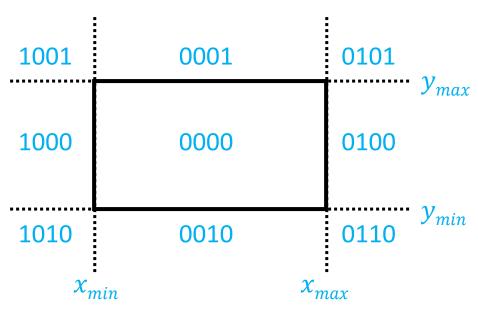
- gegeben
 - eine 2D Linie von $P_1 = (x_1, y_1)$ nach $P_2 = (x_2, y_2)$
 - \triangleright ein Rechteck definiert durch $(x_{min}, x_{max}, y_{min}, y_{max})$
- bestimme den Teil der Linie innerhalb des Rechtecks effizient
 - vermeide tatsächliche Schnittpunktberechnung soweit möglich



Clipping von Linien gegen Rechtecke

- Idee:
 - vermeide tatsächliche Schnittberechnung (soweit möglich)
 - teste Endpunkte auf trivial accept (Liniensegment im Rechteck)
 - teste Lage der Linie auf trivial reject (Segment außerhalb bzgl. einer Kante des Rechtecks)
 - wenn weder trivial accept noch trivial reject eintritt
 - unterteile das Liniensegment
 - teste auf trivial accept/reject

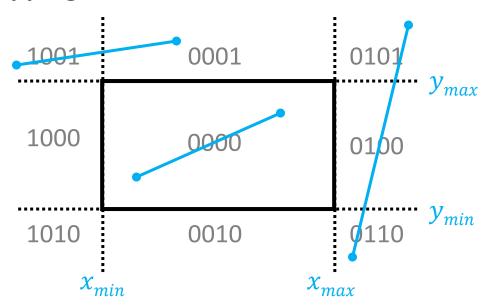
unterteile die Ebene in 9 Bereiche



- ➤ "Outcodes"
 - die Lage eines Punktes wird durch einen 4 Bit Code beschrieben
 - jedes Bit entspricht einer Kante des Clipping Rechtecks
 - ▶ Bit gesetzt ↔ Punkt liegt ausserhalb bzgl. dieser Kante

Outcode =
$$x < x_{min}$$
 $x > x_{max}$ $y < y_{min}$ $y > y_{max}$

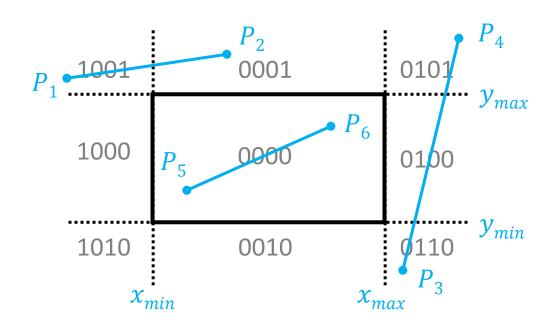
Algorithmus zum Clipping von Linien



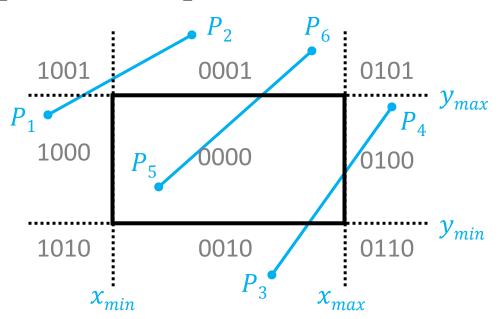
- \triangleright bestimme Outcodes von P_1 und P_2
- ▶ trivial accept, wenn beide Punkte innen liegen \Leftrightarrow Outcode(P_1) \lor Outcode(P_2) == 0 Ergebnis: die ganze Linie (\lor bitweises OR)
- ▶ trivial reject, wenn beide Punkte außerhalb sind und Outcode(P_1) ∧ Outcode(P_2) ≠ 0 Ergebnis: keine Linie (∧ bitweises AND)

Beispiele

- ▶ Outcode $(P_1) \land Outcode (P_2) = 0001 \neq 0$
- ⇒ trivial reject
- ▶ Outcode (P_5) ∨ Outcode (P_6) = 0000 == 0
- ⇒ trivial accept
- ▶ Outcode (P_3) ∧ Outcode (P_4) = 0100 ≠ 0
- ⇒ trivial reject

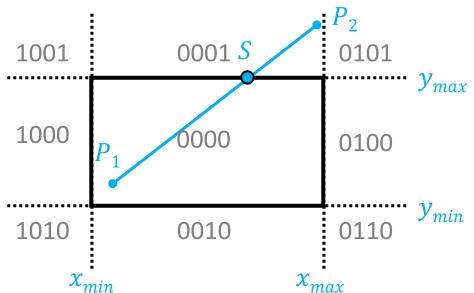


- es gibt zahlreiche Fälle die weder trivial accept noch trivial reject sind
- Achtung: es gibt Linien z.B. $\overline{P_1P_2}$ die vollständig außerhalb des Rechtecks liegen, bei denen aber kein trivial reject möglich ist
- Zum Beispiel:
 - ▶ Outcode $(P_1) \land Outcode (P_2) = 0000 == 0 \implies kein trivial reject$
 - ▶ Outcode (P_1) ∨ Outcode (P_2) = 1001 ≠ 0 ⇒ kein trivial accept



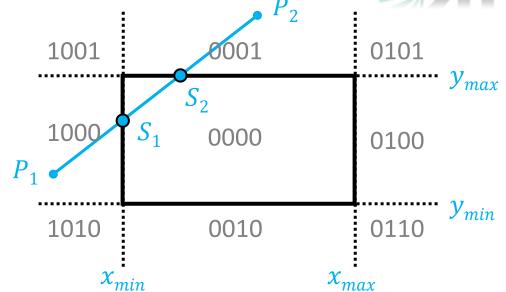
Algorithmus zum Clipping von Linien cont.

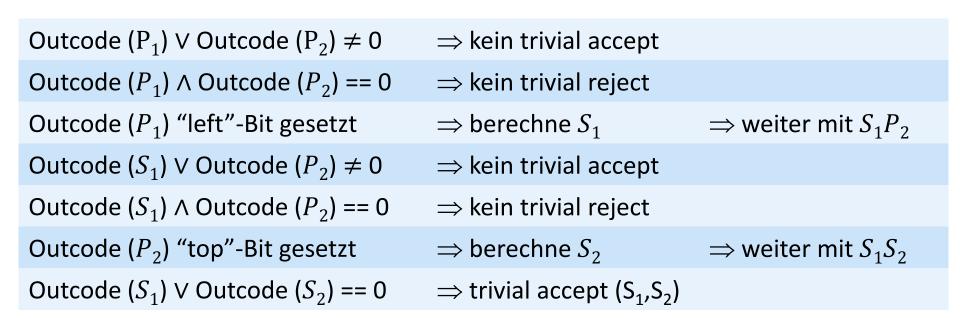
- in den nicht-trivialen Fällen gibt es mindestens eine Kante deren Bit in Outcode(P_1) gesetzt und in Outcode(P_2) nicht gesetzt ist (od. umgekehrt)
 - andernfalls wäre es einer der trivialen Fälle
- ightharpoonup die Linie P_1P_2 schneidet diese Kante
 - \triangleright berechne den Schnittpunkt S
 - \triangleright wenn P_1 außerhalb bzgl. dieser Kante liegt
 - \rightarrow verfahre weiter mit SP_2 , sonst mit P_1S



Beispiel

- ightharpoonup Outcode (P_1) = 1000
- ightharpoonup Outcode (P_2) = 0001
- ▶ Outcode $(S_1) = 0000$
- ightharpoonup Outcode (S_2) = 0000





Clipping optimieren

α -Clipping (nach Cyrus-Beck '78, Liang-Barsky '87)

- Optimierung mittels Window Edge Coordinates (WEC)
 - $\blacktriangleright WEC_E(P) < 0 \iff P$ liegt außerhalb bzgl. der Kante E
 - $\triangleright WEC_{left}(P) = p_x x_{min}$
 - $\triangleright WEC_{right}(P) = x_{max} p_x$
 - $\triangleright WEC_{bottom}(P) = p_y y_{min}$
 - $\triangleright WEC_{top}(P) = y_{max} p_y$
- ≥ Zusammenhang mit den Outcodes: das entsprechende Outcode-Bit ist gesetzt, wenn dazugehörige WEC negativ ist, d.h. Outcode_E(P)=signbit($WEC_E(P)$)

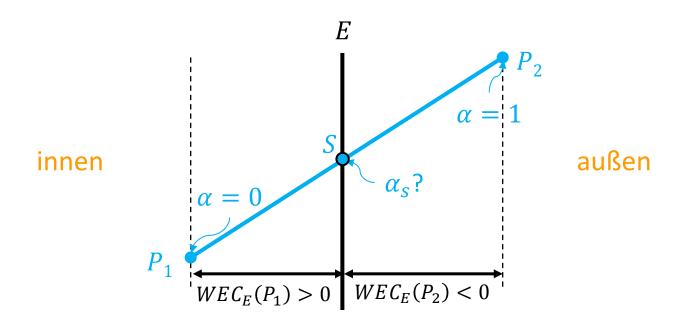
Schnittberechnung mit WECs

 \triangleright parametrisiere Linie P_1P_2 mit α :

$$P = P_1 + \alpha (P_2 - P_1), \alpha \in [0; 1]$$

 \triangleright α -Wert für den Schnittpunkt mit einer Kante

$$\frac{\overline{P_1S}}{\overline{P_1P_2}} = \alpha_S = \frac{WEC_E(P_1)}{WEC_E(P_1) - WEC_E(P_2)}$$

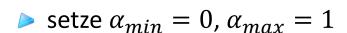


Algorithmus

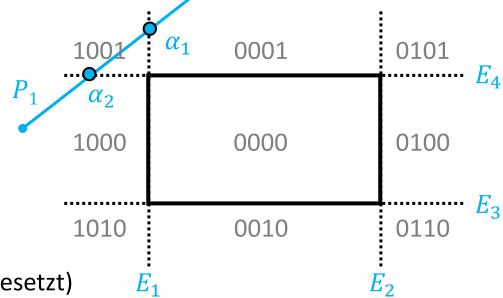
- \triangleright berechne WECs von P_1 und P_2
- bestimme Outcodes anhand des Vorzeichens der WECs
- teste auf trivial accept/trivial reject (wie bei Cohen-Sutherland)
- ansonsten verfahre so:
 - \triangleright setze $\alpha_{min}=0$, $\alpha_{max}=1$
 - \triangleright für jede Kante E für die das "Outcode_E"-Bit für P_1 oder P_2 gesetzt ist
 - \triangleright berechne $\alpha_S = \frac{WEC_E(P_1)}{WEC_E(P_1) WEC_E(P_2)}$
 - \triangleright wenn Outcode_E(P_1)
 - \triangleright dann $\alpha_{min} = \max(\alpha_{min}, \alpha_s)$
 - \triangleright sonst $\alpha_{max} = \min(\alpha_{max}, \alpha_s)$
 - \triangleright wenn $\alpha_{min} > \alpha_{max}$, dann liegt die Linie außerhalb
 - > sonst gebe das folgende Liniensegment zurück: $(P_1 + \alpha_{min}(P_2 P_1), P_1 + \alpha_{max}(P_2 P_1))$

Beispiel

- \triangleright berechne WECs für P_1 und P_2 bzgl. E_1 , E_2 , E_3 , E_4
- bestimme Outcodes
 - \triangleright Outcode(P1) = 1000
 - \triangleright Outcode(P2) = 0001
- kein trivial accept/trivial reject
- Clipping

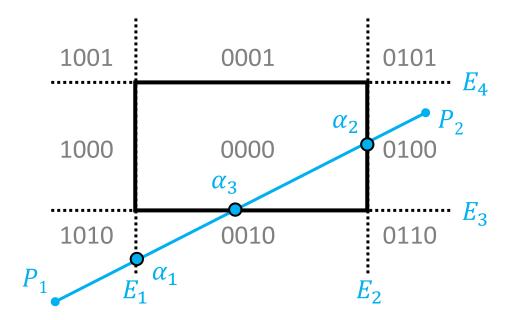


- \triangleright für Kante E_1 (Outcode_{F1}(P_1) ist gesetzt)
 - \triangleright berechne α_1 bzgl. E_1
 - \triangleright setze $\alpha_{min} = \alpha_1$, weil Outcode_{F1}(P_1) gesetzt ist
- \triangleright für Kante E_4 (Outcode_{E4}(P_2) ist gesetzt)
 - \triangleright berechne α_2 bzgl. E_4
 - \triangleright setze $\alpha_{max} = \alpha_2$, weil Outcode_{F4}(P_2) gesetzt ist
- $\triangleright \alpha_{max} < \alpha_{min} \implies \text{keine Linie}$



Beispiel

- ightharpoonup Kante $E_1
 ightharpoonup \alpha_{min} = \alpha_1$
- ightharpoonup Kante $E_2
 ightharpoonup \alpha_{max} = \alpha_2$
- ightharpoonup Kante $E_3 \rightarrow \alpha_{min} = \alpha_3$
- ightharpoonup gebe Liniensegment zurück, denn $lpha_{min} < lpha_{max}$

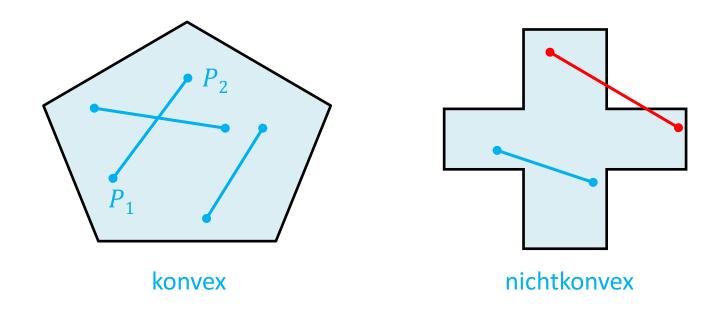


Pseudocode (hier: Axis-Aligned Clipping Region)

```
void drawClipLine(float2 p1, float2 p2, float xmin,float ymin,float xmax,float ymax) {
 // bestimme Outcodes
 { drawLine(p1, p2); return; }
 if ( outcode( p1 ) & outcode( p2 ) != 0 ) return; // trivial reject
 a min = 0; a max = 1;
 a = WEC left(p1) / (WEC left(p1) - WEC left(p2));
  a min = max( a min, a );
 } else
 a = WEC left(p1) / (WEC left(p1) - WEC left(p2));
  a max = min(a max, a);
 if ( Bit "rechts" in outcode( p1 ) gesetzt ) ... // weiter mit allen anderen Kanten
 If ( a min < a max ) {</pre>
  pt1 = p1 + a min * (p2 - p1); pt2 = p1 + a max * (p2 - p1);
  drawLine( pt1, pt2 );
} }
```

Konvexe Clipping Regionen

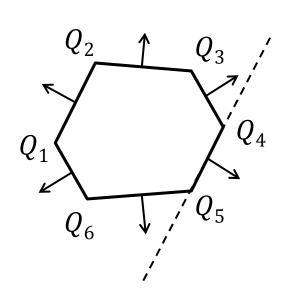
- Definition
 - \triangleright eine Menge von Punkten $M \subseteq \mathbb{R}^2$ ist konvex, wenn für alle $P_1, P_2 \in M$ alle Punkte auf der Linie $\overline{P_1P_2}$ ebenfalls in M liegen



- ein Polygon ist konvex, wenn die Menge der Punkte im Innern konvex ist
- Achtung: nichtkonvex ist nicht gleichbedeutend mit konkav (manche Definitionen bezeichnen eine Teilmenge als konkav, wenn ihr Komplement konvex ist)

Konvexe Clipping Regionen

- Clipping einer Linie gegen konvexe Polygone
 - Resultat ist ein Liniensegment oder eine leere Menge von Punkten
 - bei nichtkonvexen Polygonen können mehrere Segmente entstehen
- ightharpoonup bei konvexen Polygonen kann lpha-Clipping direkt übertragen werden
- \triangleright für ein Polygon $Q_1,...,Q_n$ ergibt sich dann
 - $\triangleright n$ Kanten $\rightarrow n$ WECs
 - \blacktriangleright $WEC_i(P)$: gerichteter Abstand von P zur Linie Q_iQ_{i+1} (negativ, wenn P außerhalb des Polygons liegt)
 - \triangleright Konvention: $Q_{n+1} = Q_1$
- Clipping in 3D
 - analog, WEC sind die Abstände zu Clipping-Ebenen



Nichtkonvexe Clipping Regionen

- unterteile in konvexe Teilregionen
- anschließend Clipping gegen jede Teilregion...
- ...und zusammensetzen der Liniensegmente

