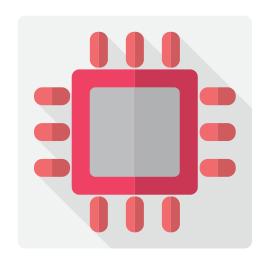
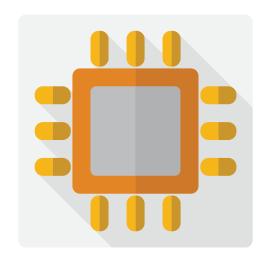
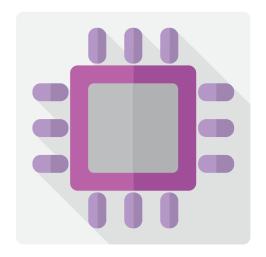


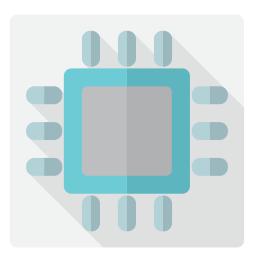
Technische Informatik – SS 2024 – Digitaltechnik und Entwurfsverfahren (TI 1) Uwe D. Hanebeck, Roman Lehmann

KIT-Fakultät für Informatik, Institut für Technische Informatik (ITEC), Forschungsgruppe für Rechnerarchitektur und Parallelverarbeitung (CAPP)









Übung 1

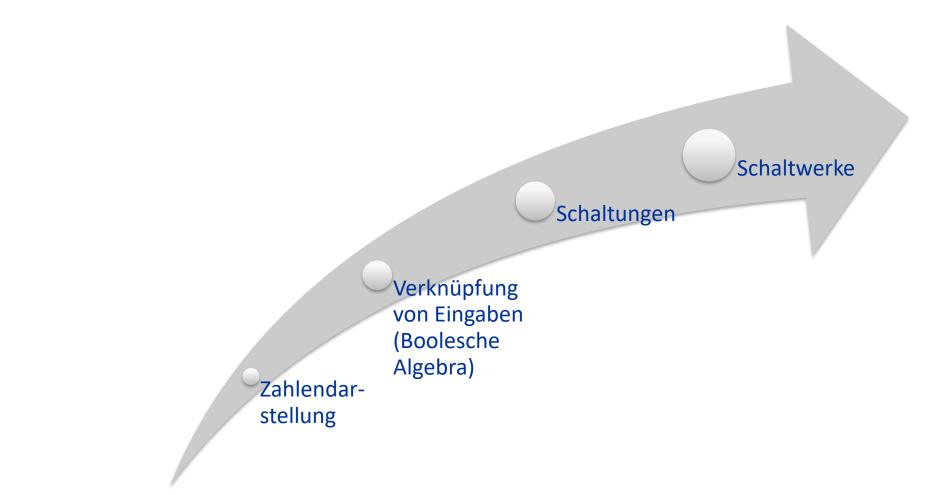
Organisatorisches

- 1. Übungsblatt ausgegeben
- Abgabe bis 06. Mai um 13.15h im Ilias in den Tutorengruppen
- Tutorienbetrieb gestartet

- 1. Mai (Mittwoch) ist Feiertag: Tutorien fallen aus
 - Betroffenen Studierende können in ein beliebiges anderes Tutorium gehen.

Aufbau der Vorlesung

• Bottom-Up Prinzip:



Inhalt 1. Übung

- Zahlendarstellungen
 - Umwandeln zwischen verschiedenen Basen (Euklid/Horner)
 - Rechnen im Zweierkomplement
 - Gleitkommazahlen
 - Addition und Multiplikation von GK-Zahlen
- Fehlerkorrektur
 - Hammingcode

Was ist 11111?

•
$$11111_2 = 31_{10}$$

•
$$11111_{VZ} = -15_{10}$$

•
$$11111_{EK} = 0_{10}$$

•
$$11111_{ZK} = -1_{10}$$

•
$$11111_{10} = 11.111_{10}$$

•
$$11111_{16} = 69.905_{10}$$

Euklidischer Algorithmus

Horner Schema

Zahlen in Zweierkomplement (ZK)

- Sei $z = b_{n-1} \dots b_0$ eine n-stellige Binärzahl
- Wortlänge: $n \ bit \rightarrow N = 2^n$ verschiedene Zahlen darstellbar
- Das Zweierkomplement einer n-stelligen **negativen(!)** Zahl z ist $2^n |z|$
 - Darstellung einer positiven Zahl z:

$$+z = z$$

Darstellung einer negativen Zahl -z:

$$-z = N - z$$

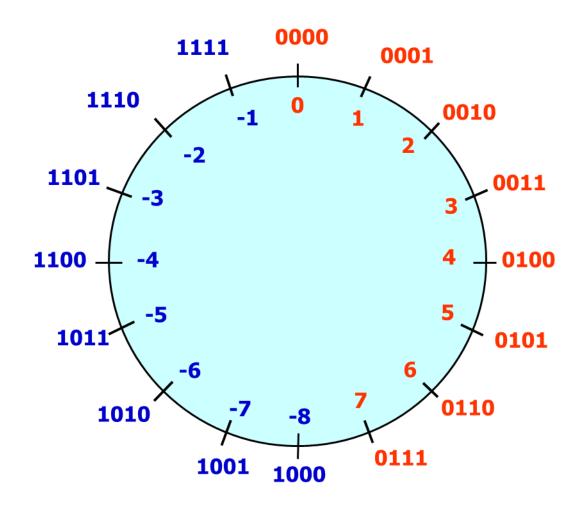
– Bespiel:

$$n = 4 \rightarrow N = 2^4 = 16$$
, Darstellung von -5?

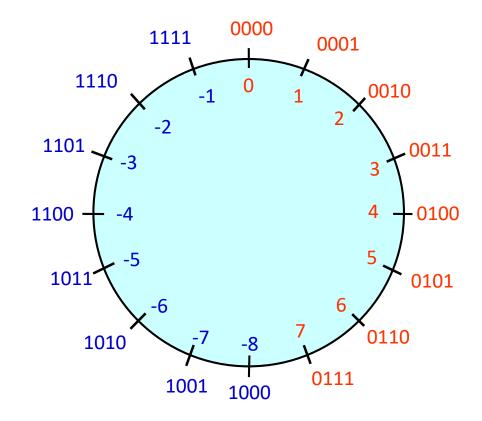
Zahlen in Zweierkomplement (ZK)

- Es sei n = 4
- Gesucht: Darstellung von -14 in ZK

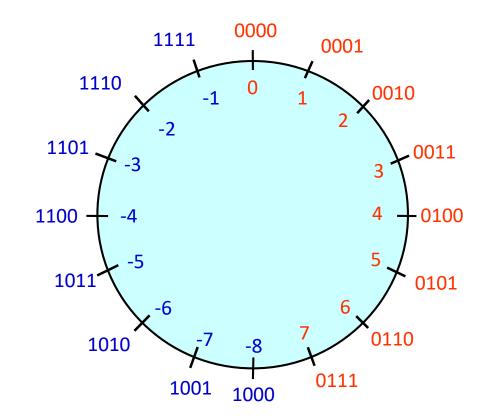
Zweierkomplement-Darstellung



Addition von ZK-Zahlen



Subtraktion von ZK-Zahlen (als Addition)



Addition von ZK-Zahlen (1)

- Bei der Addition lassen sich 3 Fälle unterscheiden:
- Fall 1: Beide Summanden sind positiv
 - Die Vorzeichenbits beider Zahlen sind 0
 - Das Ergebnis muss positiv sein
 - Das Ergebnis ist nur dann korrekt, wenn sein Vorzeichenbit gleich 0 ist, ansonsten wurde der Zahlenbereich überschritten.
 - Die beiden vordersten Überträge müssen den gleichen Wert haben.
- Man kann sich die Situation anhand des Zahlenkreises klarmachen.

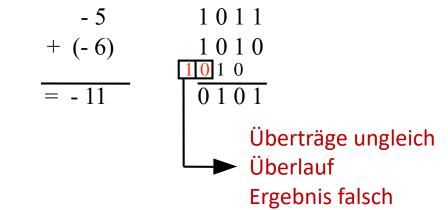
Beispiel 1

Addition von ZK-Zahlen (2)

• Fall 2: Beide Summanden sind negativ

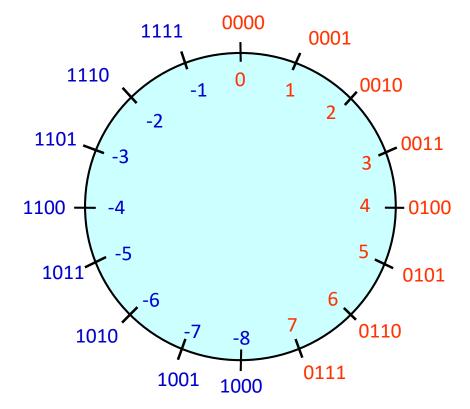
- Die Vorzeichenbits beider Zahlen haben den Wert 1.
- Das Ergebnis muss negativ sein.
- Das Ergebnis ist nur dann korrekt, wenn das Vorzeichenbit des Ergebnisses gleich 1 ist.
- Die beiden vordersten Überträge müssen den gleichen Wert haben

Beispiel 2

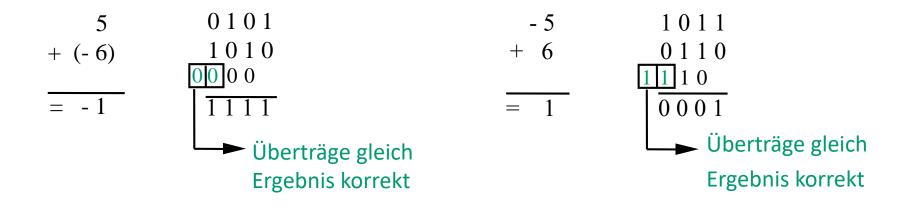


Addition von ZK-Zahlen (3)

- Fall 3 Summanden haben unterschiedliche Vorzeichen:
 - Das Vorzeichen hängt davon ab, ob Subtrahend oder Minuend betragsmäßig größer ist.
 - Das Ergebnis ist auf jeden Fall korrekt.
 - Die beiden vordersten Überträge haben immer den gleichen Wert.



Beispiel 3

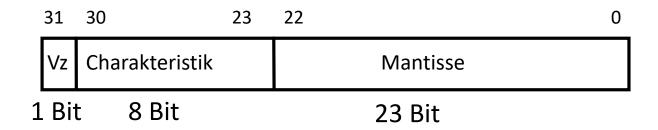


Überlauferkennung

- Allgemeine Überlauferkennung bei binärer Addition
 - Korrekte Addition: Beide Überträge sind gleich.
 - Überlauf: Beide Überträge sind ungleich.
- Realisierung z. B. durch ein Antivalenzgatter.

IEEE-P 754-Floating-Point-Standard

32-Bit Maschinenformate des IEEE-Standards:



64-Bit Maschinenformate des IEEE-Standards:

63	62 52	51 0
Vz	Charakteristik	Mantisse
1 Bi	t 11 Bit	52 Bit

Zusammenfassung des 32 (64)-Bit-IEEE-Formats

	Charakteristik	Zahlenwert
	0 (0)	(-1) ^{Vz} · 0,Mantisse · 2 ⁻¹²⁶ (-1022)
rte	1 (1)	(-1) ^{Vz} 1,Mantisse · 2 ⁻¹²⁶ (-1022)
Normalisierte Zahlen		(-1) ^{Vz} 1,Mantisse · 2 ^{Charakteristik-127} (-1023)
Norm Zahle	254 <mark>(2046)</mark>	(-1) ^{Vz} 1,Mantisse · 2 ¹²⁷ (1023)
	255 <mark>(2047)</mark>	Mantisse = 0: $(-1)^{Vz} \infty$ overflow
	255 <mark>(2047)</mark>	Mantisse ≠0: NaN (not a number)

$$Char = 1 = Exp + 127 \qquad \Rightarrow \qquad Exp = Char - 127 = -126 = Exp_{min}$$

```
0000\ 0000\ 1000\ 0000\ \cdots\ 0000\ = (1,0\cdots00)_2\cdot 2^{-126} = minreal \\ 0000\ 0000\ 1000\ 0000\ \cdots\ 0001\ = (1,0\cdots01)_2\cdot 2^{-126} = (1+2^{-23})\cdot 2^{-126} \\ 0000\ 0000\ 1000\ 0000\ \cdots\ 0010\ = (1,0\cdots10)_2\cdot 2^{-126} = (1+2^{-22})\cdot 2^{-126} \\ 0000\ 0000\ 1000\ 0000\ \cdots\ 0011\ = (1,0\cdots11)_2\cdot 2^{-126} = (1+2^{-22}+2^{-23})\cdot 2^{-126}
```

$$Char = 2 \qquad \Rightarrow \qquad Exp = Char - 127 = -125$$

$$0000\ 0001\ 0000\ 0000\ \cdots\ 0000\ = (1,0\ \cdots 00)_2\cdot 2^{-125}$$

$$0000\ 0001\ 0000\ 0000\ \cdots\ 0001\ = (1,0\ \cdots 01)_2\cdot 2^{-125} = (1+2^{-23})\cdot 2^{-125}$$

$$Char = 127 \qquad \Rightarrow \qquad Exp = Char - 127 = 0$$

```
0011 1111 1000 0000 \cdots 0000 = (1,0 \cdots 00)_2 \cdot 2^0 = 1
0011 1111 1000 0000 \cdots 0001 = (1,0 \cdots 01)_2 \cdot 2^0 = 1 + 2^{-23}
```

$$Char = 254 \qquad \Rightarrow \qquad Exp = Char - 127 = 127 = Exp_{max}$$

```
0111 1111 0000 0000 \cdots 0000 = (1,0 \cdots 00)_2 \cdot 2^{127} = 2^{127}

0111 1111 0000 0000 \cdots 0001 = (1,0 \cdots 01)_2 \cdot 2^{127} = (1 + 2^{-23}) \cdot 2^{127}

0111 1111 0111 1111 \cdots 1111 = (1,11 \cdots 11)_2 \cdot 2^{127}

= (1 + 2^{-1} + 2^{-2} + \cdots + 2^{-22} + 2^{-23}) \cdot 2^{127}

= (1 + (1 - 2^{-23})) \cdot 2^{127} = 2^{128} - 2^{104} = maxreal
```

Char = 0

 \Rightarrow

Spezialfall!

Exp = -126

□ Darstellung von ±0

$$0000\ 0000\ 0000\ 0000\ \cdots\ 0000\ = +0$$

 $1000\ 0000\ 0000\ 0000\ \cdots\ 0000\ = -0$

Kleinste denormalisierte Zahl

Darstellung denormalisierter Zahlen

$$0000\ 0000\ 0000\ 0000\ \cdots\ 0001 = (0,0\ \cdots 01)_2\cdot 2^{-126} = 2^{-23}\cdot 2^{-126} = 2^{-149}$$

0000 0000 0000 0000
$$\cdots$$
 0010 = $(0,0\,\cdots 10)_2\cdot 2^{-126}=2^{-22}\cdot 2^{-126}=2^{-148}$
0000 0000 0111 1111 \cdots 1111 = $(0,1\,\cdots 11)_2\cdot 2^{-126}$
= $(2^{-1}+2^{-2}+\cdots +2^{-23})\cdot 2^{-126}$
= $(1-2^{-23})\cdot 2^{-126}$ Größte denormalisierte Zahl

Char = 255 ⇒ Spezialfall! Exp nicht benötigt

□ Darstellung von ±∞

$$0111 \ 1111 \ 1000 \ 0000 \ \cdots \ 0000 \ = + \infty$$
$$1111 \ 1111 \ 1000 \ 0000 \ \cdots \ 0000 \ = - \infty$$

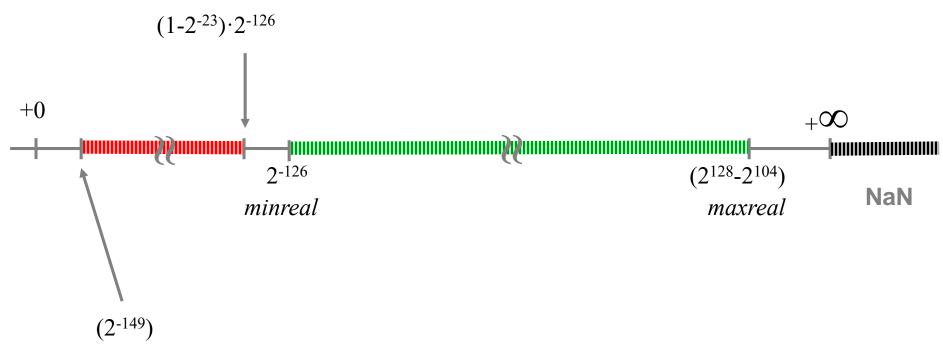
□ Darstellung von NaN (Not a Number):

$$0111 \ 1111 \ 1000 \ 0000 \cdots 0001$$

$$M \neq 0$$

Zusammenfassung der 32-Bit Format

größte denormailisierte Zahl



kleinste denormailisierte Zahl

Zusammenfassung des 32-Bit Formats

- Normalisierte GK-Zahlen: 254 verschiedene Exponenten
 - \rightarrow 2 · 254 · 2²³ = 127 · 2²⁵ normalisierte Zahlen

- Denormalisierte GK-Zahlen (Char = 0)
 - \rightarrow 2 · 2²³ = 2²⁴ denormalisierte Zahlen (inkl. ±0)
- NaN (Char = 255)
 - → $2 \cdot 2^{23} = 2^{24} \text{ NaN (inkl } \pm \infty$)

Beispielproblem

• Beispielhafte Umsetzung mit JS (JavaScript):

```
if (0.1 + 0.2 === 0.3) {
    console.log("0.1 + 0.2 equals 0.3");
} else {
    console.log("0.1 + 0.2 does not equal 0.3");
}
```

Warum fehlerhaft:

```
console.log(0.1 + 0.2)
console.log(0.3)
```

```
0.300000000000000000.3
```

 Deswegen wird in der Praxis oft ein Vergleich über ein sehr kleines Epsilon gemacht.

Literatur

• IEEE Computer Society:

IEEE Standard for Binary Floating-Point Arithmetic

ANSI/IEEE Standard 754-1985, SIGPLAN Notices, Vol. 22, No. 2, pp 9-25, 1978

• D- Goldberg:

What every computer scientist should know about floating point arithmetic

ACM Computing Suveys, Vol. 13, No. 1, pp. 5-48,1991

Aufgabe 1

• Die Zahl π mit 7 Dezimalstellen hinter dem Komma im 32-Bit-IEEE-Format.

$$\pi \approx 3,1415926_{10} = 11,0010010001111111011010_{2}$$

$$= 1,10010010001111111011010_{2} \cdot 2^{1}$$

$$= (-1)^{0} \cdot 2^{1} \cdot 1,100100100001111111011010_{2}$$

$$= (-1)^{0} \cdot 2^{(128-127)} \cdot 1,10010010000111111011010_{2}$$

$$\forall Z = 0$$

$$\text{Exp} = 1 \Rightarrow \text{Char} = 127 + 1 = 128 = 1000 \ 0000_{2}$$

$$\pi = 0100 \ 0000 \ 0100 \ 1001 \ 0000 \ 1111 \ 1101 \ 1010$$

$$= 4 \quad 0 \quad 4 \quad 9 \quad 0 \quad \text{F} \quad D \quad A_{16}$$

Aufgabe 2

• Gegeben sei eine Gleitkomma-Zahl im 32-Bit-IEEE-Format.

Wie lautet die Zahl in Dezimal-Darstellung?

```
0100 0001 1110 0000 0000 0000 0000 0000
VZ = 0
Char = 128 + 2 + 1 = 131 \rightarrow 131-127 = 4_{10}
Mantisse = 110\ 0000\ 0000\ 0000\ 0000\ 0000_{2}
Z = (-1)^0 \cdot 2^4 \cdot (1,110 \ 000 \dots \ 000_2)
    + (1 + 0, 5 + 0, 25) \cdot 2^4
       + 1,75 • 16 = 28<sub>10</sub>
```


Rechenregeln für Gleitkommazahlen

• Es seien $x=m_x$ • 2^{e_x} und $y=m_y$ • 2^{e_y} zwei Gleitkommazahlen

- Addition:
$$x + y = \left(m_x \bullet 2^{e_x - e_y} + m_y \right) \bullet 2^{e_y} \text{ falls } e_x \le e_y$$

- Subtraktion:
$$x - y = (m_x \cdot 2^{e_x - e_y} - m_y) \cdot 2^{e_y}$$
 falls $e_x \le e_y$

$$x - y = (m_x - m_y \cdot 2^{e_y - e_x}) \cdot 2^{e_x}$$
 falls $e_y \le e_x$

- Multiplikation:
$$x \cdot y = (m_x \cdot m_y) \cdot 2^{e_x + e_y}$$

- Division:
$$x \div y = (m_x \div m_y) \cdot 2^{e_x - e_y}$$

Aufgabe 3

• Addiere die beiden GK-Zahlen (im IEEE-Standard)

 $x = 0100\ 0011\ 1110\ 0000\ ...\ 0000$

y = 0100 0010 0101 0000 ... 0000

Aufgabe 4

Multipliziere die beiden GK-Zahlen (im IEEE-Standard)

$$x = 3FE0 \ 0000_{16} = 0011 \ 1111 \ 1110 \ 0000 \dots \ 0000$$

$$y = 3E40\ 0000_{16} = 0011\ 1110\ 0100\ 0000\ ...\ 0000$$

Aufgabe 5

• Gegeben seien zwei 32-Bit Gleitkommazahlen x und y im IEEE Standard

• Gesucht? 1/(x-y)

Lösung

• Implementierung im Rechner:

- 1. Vorschlag: z:=1/(x-y)

-2. Vorschlag: if (x != y) then z := 1/(x-y)

y = 0 0000 0001 000 0000 0000 0000 0000

Probleme bei Gleitkommaarithmetik

- Auslöschung: Bei der Subtraktion fast gleich großer Zahlen wird das Ergebnis aufgrund von Rundungsfehler falsch.
- Absorption: Die Addition bzw. Subtraktion einer betragsmäßig viel kleineren Zahl ändert die größere Zahl nicht.
- **Unterlauf:** Ist ein (Zwischen-)Ergebnis betragsmäßig keiner als minreal, wird es mit 0 approximiert. Dadurch kann das Endergebnis der Rechnung erheblich von dem erwarteten Ergebnis abweichen.
- Ungültigkeit des Distributivgesetzes und Assoziativgesetzes

Hammingcode

- Vom Datenwort zum Codewort
- 1- und 2-Bit Fehler

1-Bit-Fehlerkorrektur

• Notwendiger Aufwand für die sog. *Hammingcodes*:

$$2^k \ge m + k + 1$$

k: Zahl der zusätzlichen Prüfbits

m: Zahl der Datenbits

Mindestaufwand: Ein-Bit Fehlerkorrekturcodes

Zahl der Datenbits m	Zahl der Prüfbits k	Bits insgesamt: $m + k$
1	2	m+2
2 bis 4	3	m+3
5 bis 11	4	m+4
12 bis 26	5	m+5
27 bis 57	6	m + 6
•••		•••

Aufbauprinzipien

• Unterschiedliche Aufbauprinzipien sind möglich

• Hier: Einfaches Realisierungsschema

• Vorteil: Beliebige Erweiterbarkeit auf größere Datenwortlängen

• Der Ansatz verwendet k verschiedene Prüfgleichungen für die Quersummen QS_0 bis QS_{k-1}

Ansatz (1)

• Die i-te Quersumme (QS_i) ergänzt alle Positionen im Codewort, die die Potenz 2^i in ihrer Ziffernwertigkeit enthalten (i=0,1,...,k-1) auf gerade Parität

```
• k_1 = QS_0 über alle ungeraden Stellen 1, 3, 5, 7, ...
```

•
$$k_2 = QS_1$$
 über die Stellen 2, 3, 6, 7, 10, 11, ...

•
$$k_3 = QS_2$$
 über die Stellen 4, 5, 6, 7, 12, 13, 14, 15, ...

•
$$k_4 = QS_3$$
 über die Stellen 8, 9, 10, 11, 12, 13, 14, 15, ...

Ansatz (2)

- Es werden gerade Quersummen verwendet
- Datenwörter werden zum Einfügen der Prüfbits gespreizt, indem die Codewortposition 2^i für die i-te Quersummenprüfstelle k_{i+1} freigehalten wird
- (*m*_i bezeichnen die Datenbits)
- Damit erhält man folgendes Schema:

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Position
	4								3				2		1	0	i
m_{12}	<i>k</i> ₅	m_{11}	m_{10}	m_9	m_8	m_7	m_6	m_5	k_4	m_4	m_3	m_2	k_3	m_1	k_2	k_l	Stellen

Ansatz (3)

 Beim Lesen eines evtl. fehlerhaften Codeworts kann durch erneutes Bilden der Quersummen ermittelt werden, ob und an welcher Position ein Fehler aufgetreten ist.

• Die Quersummen geben dabei, als Binärzahl interpretiert, die fehlerhafte Position im Codewort an

• Liegt kein Fehler vor, dann sind alle Prüfgleichungen erfüllt

Beispiel (1)

• Hammingcode mit 4 Datenbits und 3 Prüfbits, also 7-Bit Codewörtern

Datenwort: 1101 7 6 5 4 3 2 1

$$\rightarrow$$
 1 1 0 - 1 - - m_4 m_3 m_2 k_3 m_1 k_2 k_1

Bestimmung der Prüfbits:

$$k_1 = m_1 \oplus m_2 \oplus m_4 = 1 \oplus 0 \oplus 1 = \mathbf{0}$$

$$k_2 = m_1 \oplus m_3 \oplus m_4 = 1 \oplus 1 \oplus 1 = \mathbf{1}$$

$$k_3 = m_2 \oplus m_3 \oplus m_4 = 0 \oplus 1 \oplus 1 = \mathbf{0}$$

→ Codewort :

1 1 0 0 1 1 0

Beispiel (2)

• Bildet man erneut die Prüfbits bei fehlerfreiem Codewort, ergibt sich als Syndrom $k_3k_2k_1$ der Wert 000.

Codewort:

$$k_1 = k_1 \oplus m_1 \oplus m_2 \oplus m_4 = 0 \oplus 1 \oplus 0 \oplus 1 = \mathbf{0}$$

$$k_2 = k_2 \oplus m_1 \oplus m_3 \oplus m_4 = 1 \oplus 1 \oplus 1 \oplus 1 = \mathbf{0}$$

$$k_3 = k_3 \oplus m_2 \oplus m_3 \oplus m_4 = 0 \oplus 0 \oplus 1 \oplus 1 = \mathbf{0}$$

Codewort:

$$k_1 = k_1 \oplus m_1 \oplus m_2 \oplus m_4 = 0 \oplus 0 \oplus 0 \oplus 1 = \mathbf{1}$$

$$k_2 = k_2 \oplus m_1 \oplus m_3 \oplus m_4 = 1 \oplus 0 \oplus 1 \oplus 1 = \mathbf{1}$$

$$k_3 = k_3 \oplus m_2 \oplus m_3 \oplus m_4 = 0 \oplus 0 \oplus 1 \oplus 1 = \mathbf{0}$$

$$k_3 k_2 k_1 = 011_2 = 3_{10}$$

Fehler an 3. Position

Beispiel (3)

• Ist ein **Prüfbit verfälscht**, z. B. k_3 , wird nur die betroffene Prüfgleichung beeinflusst, hier QS_2

Codewort:

$$k_1 = k_1 \oplus m_1 \oplus m_2 \oplus m_4 = 0 \oplus 1 \oplus 0 \oplus 1 = \mathbf{0}$$

$$k_2 = k_2 \oplus m_1 \oplus m_3 \oplus m_4 = 1 \oplus 1 \oplus 1 \oplus 1 = \mathbf{0}$$

$$k_3 = k_3 \oplus m_2 \oplus m_3 \oplus m_4 = 1 \oplus 0 \oplus 1 \oplus 1 = \mathbf{1}$$

$$k_3 k_2 k_1 = 100_2 = 4_{10}$$

Fehler an 4. Position

Zusammenfassung

- Fehlerkorrekturcodes können ein fehlerfreies Codewort von einem fehlerhaften Codewort unterscheiden.
- Bei fehlerhaften Codewörtern sind die entsprechenden Bits im Codewort innerhalb bestimmter Grenzen korrigierbar.
 - → Mehr als ein Prüfbit pro Datenwort notwendig
 - → Fehlertoleranz durch Informationsredundanz
- Um die Fehlerkorrektur vornehmen zu können, wird in den Prüfbits eindeutig kodiert, ob und ggf. welche Bits im gesamten Codewort (Daten- und Prüfbits) fehlerhaft sind.

Hammingcode: Beispiel 2-Bitfehler

• Fall 1: Kein Fehler

$$m_5$$
 k_4 m_4 m_3 m_2 k_3 m_1 k_2 k_1 **PB** 0 0 1 1 0 0

• Fall 2: 1-Bit-Fehler

• Fall 3: 2-Bitfehler

Gesamtparität: gerade

$$k_4 k_3 k_2 k_1 = 0000$$

Gesamtparität: ungerade

$$k_4 k_3 k_2 k_1 = 0110$$

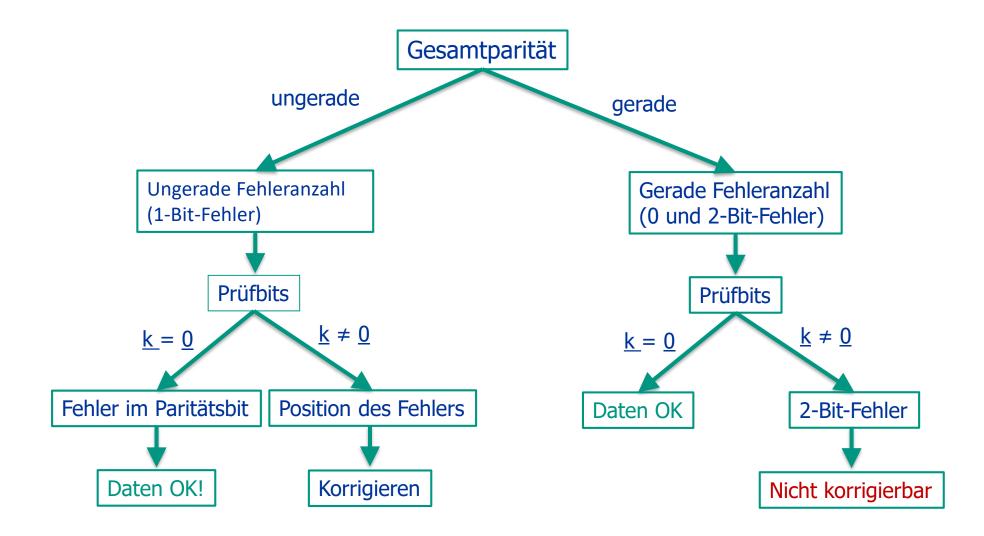
Fehler an 6. Position

Gesamtparität: gerade

$$k_4 k_3 k_2 k_1 = 0101$$

2-Bit-Fehler

Fallunterscheidungen



Hammingcode: Zusammenfassung

- An Standard-Codewörter lässt sich ein weiteres Quersummenbit anfügen, so dass Zweibitfehler im Codewort erkennbar werden.
- 32-Bit Wortlänge werden durch 7 Prüfbits zur Einzelfehlerkorrektur und Doppelfehlererkennung ergänzt.
- 64 Bit lange Datenwörter erfordern 8 Prüfbits.

Aufgabe 1

• Datenwort: 10101010

Codewort bilden!

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Position
	4								3				2		1	0	i
m ₁₂	k ₅	m ₁₁	m ₁₀	m ₉	m ₈	m ₇	m ₆	m ₅	\mathbf{k}_4	m ₄	m ₃	m ₂	k ₃	m ₁	k ₂	k ₁	Stellen

Datenwort: 1 0 1 0 1 0 1 0

Datenwort ausspreizen:

12 11 10 9 8 7 6 5 4 3 2 1

1 0 1 0 - 1 0 1 - 0 -

$$m_8$$
 m_7 m_6 m_5 k_4 m_4 m_3 m_2 k_3 m_1 k_2 k_1

Bestimmung der Prüfbits:

$$k_1 = m_1 \oplus m_2 \oplus m_4 \oplus m_5 \oplus m_7 = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = \mathbf{0}$$

$$k_2 = m_1 \oplus m_3 \oplus m_4 \oplus m_6 \oplus m_7 = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = \mathbf{0}$$

$$k_3 = m_2 \oplus m_3 \oplus m_4 \oplus m_8 = 1 \oplus 0 \oplus 1 \oplus 1 = \mathbf{1}$$

$$k_4 = m_5 \oplus m_6 \oplus m_7 \oplus m_8 = 0 \oplus 1 \oplus 0 \oplus 1 = \mathbf{0}$$

→ Codewort: 1 0 1 0 0 1 0 1 1 0 0 0

```
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
```

Aufgabe 2

• Der Hauptspeicher eines Rechners mit 8-Bit Datenwortbreite unterstützt eine Einzelbitfehler-Korrektur. Aus dem Speicher erhält man die Codewörter

Codewort 1: 101001000110

Codewort 2: 100000000000

• Prüfen Sie beide Codewörter auf Fehler, die beim Übertragen oder Speichern entstanden sein könnten und korrigieren Sie diese (falls notwendig). Geben Sie die zugehörigen Datenwörter an.

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Position
	4								3				2		1	0	i
m ₁₂	k ₅	m ₁₁	m ₁₀	m ₉	m ₈	m ₇	m ₆	m ₅	\mathbf{k}_4	m ₄	m ₃	m ₂	k ₃	m ₁	k ₂	k ₁	Stellen

Hammingcode mit 8 Datenbits und 4 Prüfbits

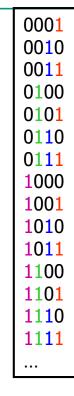
Codewort 1: 1 0 1 0 0 1 0 0 0 1 1 0

Bestimmung der Prüfbits:

```
k_1 = k_1 \oplus m_1 \oplus m_2 \oplus m_4 \oplus m_5 \oplus m_7 = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = \mathbf{0}
k_2 = k_2 \oplus m_1 \oplus m_3 \oplus m_4 \oplus m_6 \oplus m_7 = 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = \mathbf{0}
k_3 = k_3 \oplus m_2 \oplus m_3 \oplus m_4 \oplus m_8 = 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = \mathbf{0}
k_4 = k_4 \oplus m_5 \oplus m_6 \oplus m_7 \oplus m_8 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = \mathbf{0}
```

 $k_4 k_3 k_2 k_1 = 0000$ \rightarrow Codewort ist fehlerfrei

→ Datenwort: 1 0 1 0 1 0 0 1



17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Position
	4								3				2		1	0	i
m ₁₂	k ₅	m ₁₁	m ₁₀	m ₉	m ₈	m ₇	m ₆	m ₅	k ₄	m ₄	m ₃	m ₂	k ₃	m ₁	k ₂	k ₁	Stellen

12 11 10 9 8 7 6 5 4 3 2 1

Codewort 2: 1 0 0 0 0 0 0 0 0 0 0

 m_8 m_7 m_6 m_5 k_4 m_4 m_3 m_2 k_3 m_1 k_2 k_1

Bestimmung der Prüfbits:

$$k_1 = k_1 \oplus m_1 \oplus m_2 \oplus m_4 \oplus m_5 \oplus m_7 = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = \mathbf{0}$$

$$k_2 = k_2 \oplus m_1 \oplus m_3 \oplus m_4 \oplus m_6 \oplus m_7 = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = \mathbf{0}$$

$$k_3 = k_3 \oplus m_2 \oplus m_3 \oplus m_4 \oplus m_8 = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = \mathbf{1}$$

$$k_4 = k_4 \oplus m_5 \oplus m_6 \oplus m_7 \oplus m_8 = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = \mathbf{1}$$

 $k_4 k_3 k_2 k_1 = 1100 = 12_{10}$ Fehler in der 12. Position

→ Datenwort: 0 0 0 0 0 0 0 0

