

Vorlesung Einführung in Rechnernetze 7. Netzkopplung und Vermittlung

Prof. Dr. Martina Zitterbart

Dipl.-Inform. Martin Florian, Markus Jung (M.Sc.), Matthias Flittner (M.Sc.) [zitterbart | florian | m.jung | flittner]@kit.edu

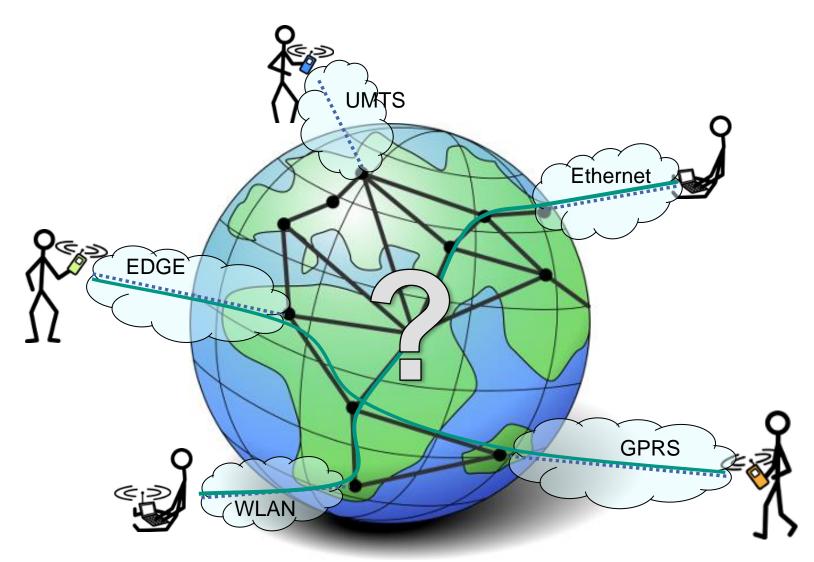
Institut für Telematik, Prof. Zitterbart

Kapitelübersicht

- 1. Einführung
- 2. Netzwerkarchitekturen
- 3. Physikalische Grundlagen
- 4. Protokollmechanismen
- 5. Die Sicherungsschicht: HDLC
- 6. Die Sicherungsschicht: Lokale Netze
- 7. Netzkopplung und Vermittlung
- 8. Die Transportschicht
- 9. Sicherheit
- 10. Anwendungssysteme

- 1. Motivation
- 2. Vermittlungstechniken
 - 1. Leitungsvermittlung
 - 2. Paketvermittlung
 - 3. Datagrammvermittlung
 - 4. Virtuelle Verbindungen
 - 5. Nachrichtenvermittlung
- 3. Netzkopplung
 - Repeater
 - 2. Brücke
 - 3. Router
- 4. Vermittlung im Internet

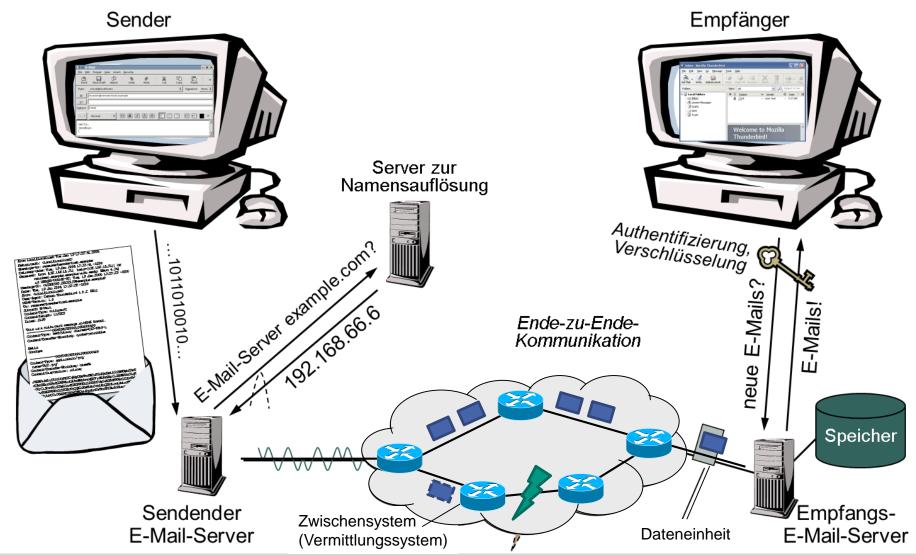
Kapitelübersicht


- 1. Einführung
- 2. Netzwerkarchitekturen
- 3. Physikalische Grundlagen
- 4. Protokollmechanismen
- 5. Die Sicherungsschicht: HDLC
- 6. Die Sicherungsschicht: Lokale Netze
- 7. Netzkopplung und Vermittlung
- 8. Die Transportschicht
- 9. Sicherheit
- 10. Anwendungssysteme

- 1. Motivation
- 2. Vermittlungstechniken
 - 1. Leitungsvermittlung
 - 2. Paketvermittlung
 - 3. Datagrammvermittlung
 - 4. Virtuelle Verbindungen
 - 5. Nachrichtenvermittlung
- 3. Netzkopplung
 - Repeater
 - 2. Brücke
 - 3. Router
- 4. Vermittlung im Internet

7.1 Motivation: Globale Netze und Kommunikation

Herausforderungen und Lösungsstrategien

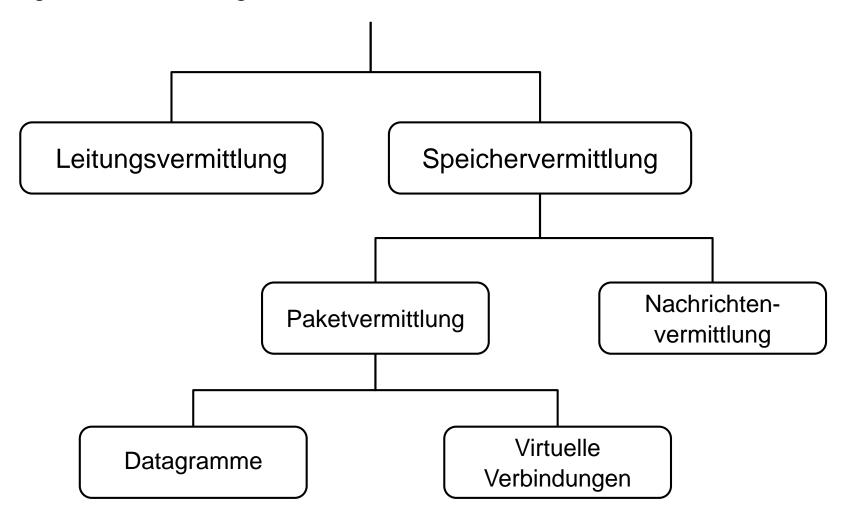


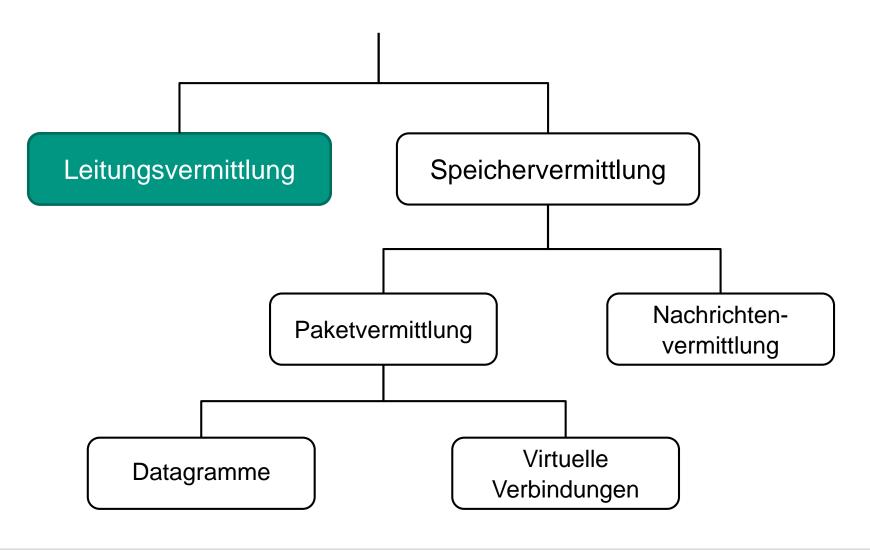
- Wesentliche Herausforderungen
 - Heterogene Netze: Wie koppelt man unterschiedliche Netze?
 - Unterschiedliche Adressen, Bandbreiten, Verzögerungszeiten, ...
 - Wegfindung (Routing): Wie findet man den Weg von A nach B?
 - Weiterleitung: Wie gelangen die Daten von A nach B?
- Potentielle Lösungsstrategien
 - Zusätzliches Adressierungschema und -abbildung
 - Einbau von "Vermittlern"
 - Aufbau von Netzkarten / Graphen (vgl. Straßennetz)
 - Nutzung von Graphenalgorithmen (vgl. Navigation im Straßennetz)
 - **.** . . .
- Wegfindung? Wieso unterschiedliche Wege?
- Wie ermittelt man die Wege im Internet?

Netzkopplung und Vermittlung in unserem Beispiel

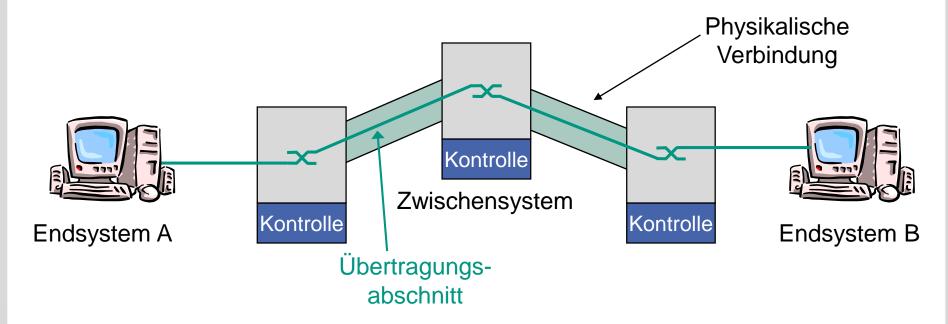
Kapitelübersicht

- 1. Einführung
- 2. Netzwerkarchitekturen
- 3. Physikalische Grundlagen
- 4. Protokollmechanismen
- 5. Die Sicherungsschicht: HDLC
- 6. Die Sicherungsschicht: Lokale Netze
- 7. Netzkopplung und Vermittlung
- 8. Die Transportschicht
- 9. Sicherheit
- 10. Anwendungssysteme

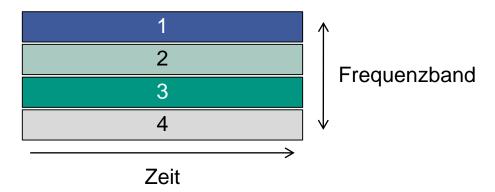

- 1. Motivation
- 2. Vermittlungstechniken
 - 1. Leitungsvermittlung
 - 2. Paketvermittlung
 - 3. Datagrammvermittlung
 - 4. Virtuelle Verbindungen
 - 5. Nachrichtenvermittlung
- 3. Netzkopplung
 - Repeater
 - 2. Brücke
 - 3. Router
- 4. Vermittlung im Internet

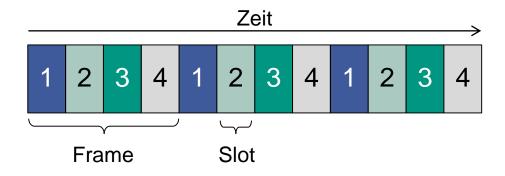

7.2 Vermittlungstechniken

Folgende Vermittlungstechniken lassen sich unterscheiden



7.2.1 Leitungsvermittlung

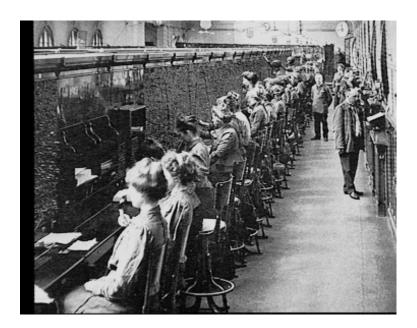

- Verbindungsorientierte Kommunikation
- Verbindung erhält einen durchgehenden Kanal für die ausschließliche Nutzung mit konstanter Bandbreite
 - Hierzu werden aufeinanderfolgende Übertragungsabschnitte miteinander verknüpft


Leitungsvermittlung: Multiplexing

- Bei Leitungsvermittlung ist starres Multiplexing möglich
 - Frequenzmultiplex
 - Feste Zuweisung von Übertragungskanal und Frequenzabschnitt

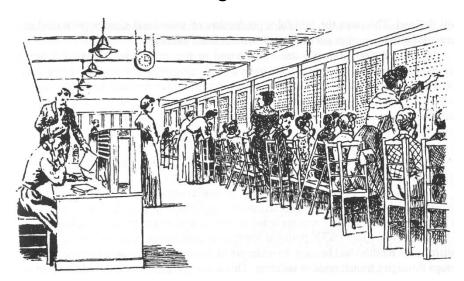
- Zeitmultiplex
 - Feste Zuweisung von Übertragungskanal und Zeitabschnitt (time slot)

Leitungsvermittlung: Eigenschaften


- Aufbau eines durchgehenden, nicht-speichernden Übertragungskanals ("Leitung") zwischen den Endsystemen
- Zugesicherte, feste Bandbreite
- Übertragungsverzögerungen sind auf physikalisch bedingte signaltechnische Laufzeiten beschränkt
- Bitfolgen werden reihenfolgetreu übertragen
 - Absenderreihenfolge beim Empfänger beibehalten (wire-like feature)
- Vermittlung in den Zwischensystemen erfordert keine zusätzliche Kontrollinformation zur Adressierung
 - Bei Paketvermittlung ist solche Kontrollinformation erforderlich

Leitungsvermittlung: Telefonnetz

- Einsatzgebiet: "klassische" Telekommunikationsnetze
 - Analoges Telefonnetz
 - Public Switched Telephone Network, PSTN
 - ... früher mit manueller Vermittlung

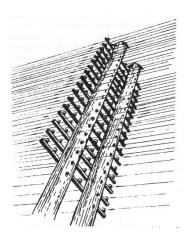

- Digitale Netze zur Sprachkommunikation (nicht nur)
 - ISDN, GSM

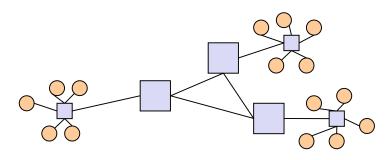
Entwicklung der Telekommunikation

- Architektur des frühen Telefonnetzes
 - Einige hundert Nutzer in einem Umkreis von ca. 1 km des Vermittlungsgebäudes
 - Jedes Telefon ist per Kupferkabel angeschlossen
 - Operator kann Verbindung zwischen zwei Kabeln herstellen

... bereits hier lassen sich Kernkomponenten von Telekommunikationsnetzen erkennen

 Endsysteme, Übertragungsabschnitte, Vermittlungsstellen Übertragungsnetze





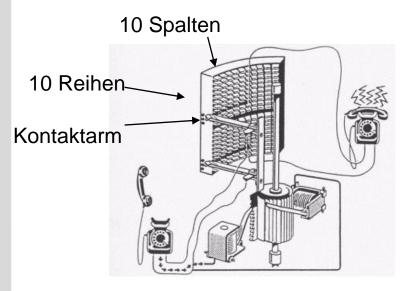
Entwicklung des Telefonnetzes

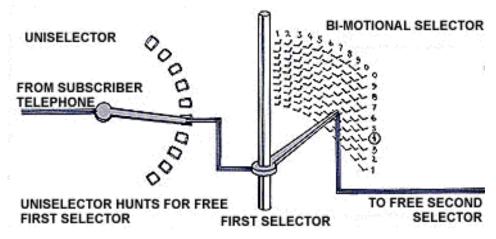
- Einfluss des Wachstums auf Topologie und Kontrolle
 - Lange Übertragungsleitungen ermöglichen Verbindung zwischen Vermittlungsstellen
 - Aus Sternnetz wird ein vermaschtes Netz

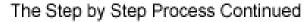
- Wachsende Teilnehmerzahlen und steigende Zahl von Ferngesprächen
 - Große Vermittlungsräume
 - Netzmanagement wird schnell zum Engpass

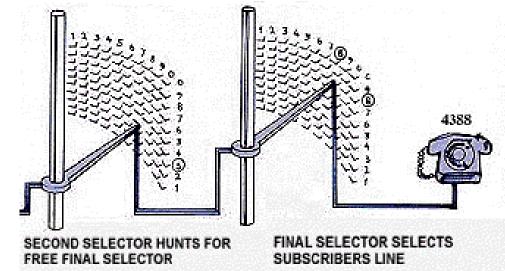
Entwicklung des Telefonnetzes

- Step-by-step Mechanismus von Armon Strowger
 - Automatisierung des Verbindungsmanagements
 - Strowger war Bestatter; Frau des Konkurrenten arbeitete in der Vermittlung ... Aufträge gingen an den Konkurrenten
 - Patentierung 1891
 - Gründung der Firma "Strowger Automatic Telephone Exchange"
 - Teilnehmer können Verbindung selbst herstellen
 - Ziffern 0-9
 - 100 Anschlüsse
 - Kaskadierbare für höhere Zahl an Anschlüssen
 - Elektromechanische Verbindungsvermittlung
 - → Entwicklung eines standardisierten Nummernplans
 - ... teilweise heute noch im Einsatz


- Keine Änderungen in der Architektur
 - Definition von User-Network Interface (UNI) und Network-Network Interface (NNI)
- Vermittlungsstellen je über eine Kupferleitung verbunden

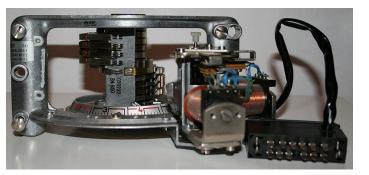





Step-by-step Mechanismus (Hebdrehwähler)

www.sigtel.com/tel_tech_sxs.html

Beispiele



Kleines "Switchboard" Quelle: phworld.org

Hebdrehwähler Quelle: wikipedia

Edelmetallkontakt-Motor-Drehwähler Quelle: wikipedia

Western Electric Step by Step Community Dial Office (CDO) Quelle: phworld.org

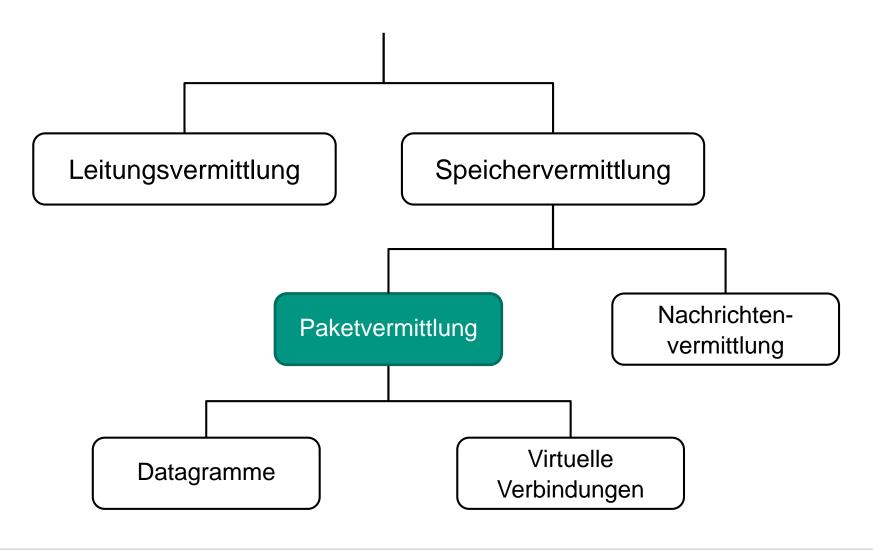
Beispiele

- Erste öffentliche automatische Telefonvermittlung in UK
 - 1912 eröffnet
 - Bis 1995 in Betrieb
 - Genutzt für die Vermittlung innerhalb eines Gebäudes

Batterien ——

http://www.seg.co.uk/telecomm/automat1.htm

Beispiele

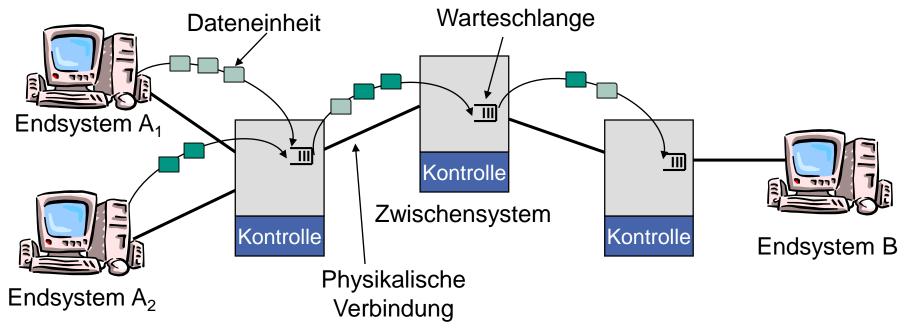

Heutzutage...

Digitale Vermittlungsstelle Quelle: wikipedia

7.2.2 Paketvermittlung

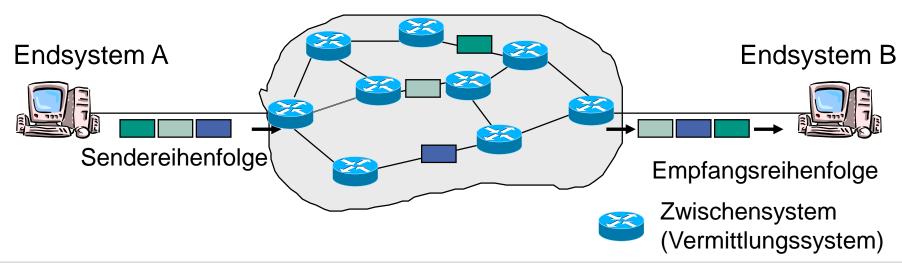
- Weiterleitung aufgrund von Kontrollinformation in den Dateneinheiten
 - Zieladresse in Datagrammen
 - Lokale Kennung bei virtuellen Verbindungen
 - Wechselnde Wege für aufeinanderfolgende Dateneinheiten durch das Netz möglich
 - Reihenfolgevertauschungen sind möglich
- Zwischensysteme verfügen über Speicher in Form von Warteschlangen
 - Pufferung der Dateneinheiten, falls Ausgangsinterface nicht frei
 - Verlust von Dateneinheiten möglich
 - Begrenzte Pufferkapazität in den Zwischensystemen
- Es besteht im Allgemeinen keine feste Zeitbeziehung zwischen den einzelnen zu vermittelnden Dateneinheiten

Paketvermittlung: Multiplexing



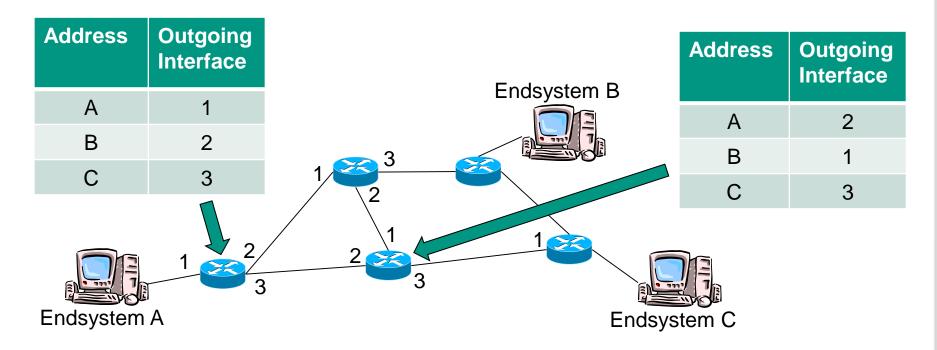
- I.d.R. Verwendung von Zeitmultiplex
 - Im Allgemeinen keine Reservierungen von Ressourcen (Zeitschlitze, Frequenzen)
- Bei Paketvermittlung spricht man von statistischem Multiplexing

Paketvermittlung: Übermittlung von Dateneinheiten


- Abschnittsweise Übermittlung von Dateneinheiten
- Zwischenspeicherung (Pufferung) erfolgt ggf. in den Zwischensystemen in sog. Warteschlangen (engl. Queue)
- Varianten
 - Virtuelle Verbindungen verbindungsorientiert
 - Datagramme verbindungslos

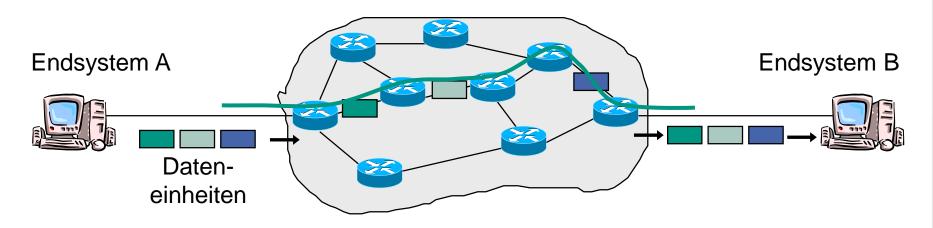
7.2.3 Datagrammvermittlung

- Dateneinheiten (sog. Datagramme) werden als isolierte Einheiten betrachtet
- Zieladresse in jedem Datagramm enthalten
 - Keine Verbindungsaufbau und -abbau-Phase nötig
 - Keine Information pro Verbindung in den Zwischensystemen
- Dateneinheiten können das Netz auf unterschiedlichen Wegen durchlaufen
 - Überholvorgänge möglich
 - Datagramme können ungeordnet beim Empfänger ankommen



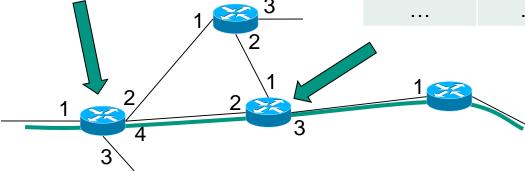
Datagrammvermittlung

- Zieladresse in jedem Datagramm erforderlich
 - Keine verbindungsspezifische Zustandsinformation in den Zwischensystemen
- Weiterleitungstabelle in den Zwischensystemen
 - Durch Routingprotokolle aufgebaut



7.2.4 Virtuelle Verbindungen

- "Virtuelle Leitung" / fester Übertragungsweg zwischen zwei Endsystemen
 - Alle Dateneinheiten folgen dem gleichen Weg, daher Reihenfolgetreue
 - Vermittlung von Dateneinheiten anhand von Kennungen (sog. Virtual Circuit Identifier, VCI)
 - Zieladresse nur beim Verbindungsaufbau nötig
- 3 Phasen
 - Verbindungsaufbau, Datenübertragung, Verbindungsabbau
- Einsatzbeispiel
 - Multiprotocol Label Switching (MPLS)


Virtuelle Verbindungen

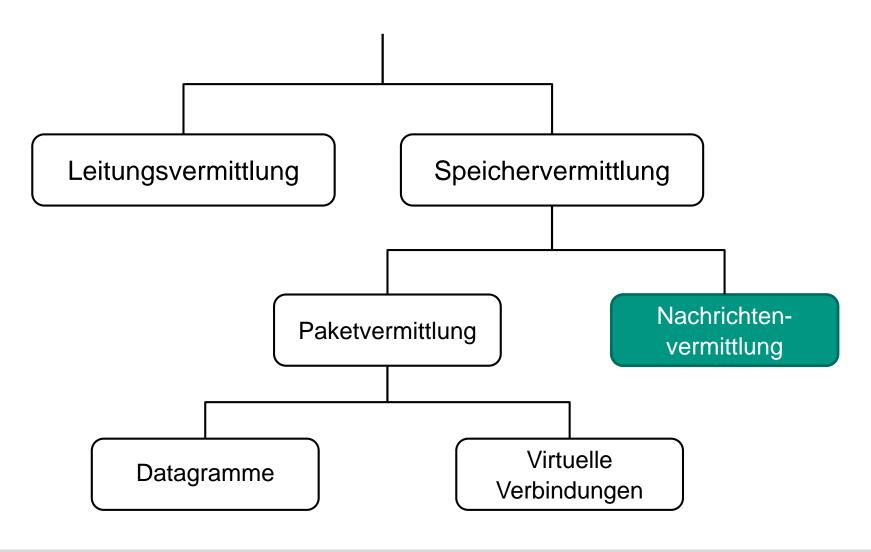
- Kennungen sind im Allg. nur für einen Übertragungsabschnitt eindeutig
- 3 Phasen
 - Verbindungsaufbau: Virtuelle Verbindung wird durch die Festlegung von Kennungen auf den Zwischensystemen etabliert (Zieladresse nötig)
 - Datenübertragung: Daten werden anhand der Kennungen vermittelt
 - Verbindungsabbau: Virtuelle Verbindung wird abgebaut, d.h. Vermittlungsinformationen in den Zwischensystemen werden gelöscht

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
1	11	4	25

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
2	25	3	12

Varianten virtueller Verbindungen

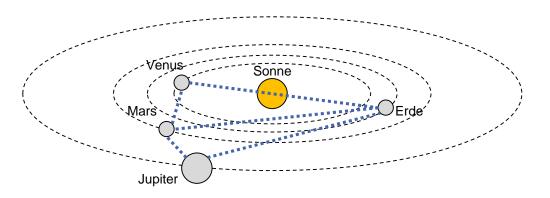
- Feste virtuelle Verbindung (Permanent Virtual Circuit, PVC)
 - Längerfristig eingerichteter virtuelle Verbindungen
 - Aufbau in der Regel durch das Netzmanagement bzw. die Netzadministration
 - Vergleichbar mit einer Standleitung in leitungsvermittelnden Netzen
- Gewählte virtuelle Verbindung (Switched Virtual Circuit, SVC)
 - Virtuelle Verbindung wird bei Bedarf etabliert
 - Hierzu Signalisierungsprotokoll notwendig
 - Etablierung durch Nutzer ohne Eingreifen der Netzadministration

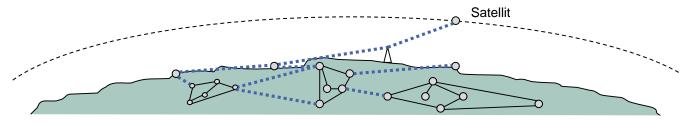

Virtuelle Verbindung vs. Datagramme

	Virtuelle Verbindung	Datagramme
Zieladresse	Nur während des Verbindungsaufbaus nötig	In jeder Dateneinheit benötigt → Overhead
Reihenfolge	Reihenfolgetreu	Nicht Reihenfolgetreu
Verbindungsaufbau und -abbau	Notwendig → Zeitlicher Overhead (Aufbau) → Verbindungsinformation in Zwischensystemen	Nicht nötig
Netzkomplexität und -funktionalität	 → Quality-of-Service einfacher realisierbar → Mehr Funktionalität im Netz 	 → Keine Zustandshaltung im Netz → Mehr Funktionalität im Endsystem
Beispiele	MPLS	Internet

7.2.5 Nachrichtenvermittlung

- Charakteristika
 - Einheiten der Vermittlung: Nachrichten
 - Entsprechen anwendungsorientierten Gesichtspunkten
 - Nachricht wird typischerweise mittels mehrerer Dateneinheiten vermittelt
 - Segmentierung und Reassemblierung
 - In den Zwischensystemen
 - Reassemblierung der Nachrichten
 - Hierzu erforderlich
 - Alle Dateneinheiten, die zu einer Nachricht gehören, müssen an das gleiche nächste Zwischensystem weitergeleitet werden
 - Ende-zu-Ende-Verzögerung ist im Vergleich zur Paketvermittlung deutlich höher




Anwendungsbeispiel: Delay-Tolerant Networks

[Wart03] [Zhan06]

- Delay-Tolerant Networks (DTNs)
 - Unterbrochene Verbindungen
 - Große Mobilität einzelner Systeme
 - Gegebenenfalls kein durchgängiger Ende-zu-Ende-Pfad verfügbar
 - Lange oder variabel große Verzögerungen
 - Interplanetar bis zu einigen Minuten, trotz Lichtgeschwindigkeit
 - Asymmetrische Datenraten
 - Hohe Fehlerraten
- Einsatzgebiete
 - Interplanetare Netze
 - Mobile Ad-hoc Netze

Anwendungsbeispiel: Delay-Tolerant Networks

- Speichervermittelte Übertragung
 - Ermöglicht Kommunikation bei Verbindungen, die zwischenzeitlich unterbrochen werden
- Bilden eines Overlays über regionale Netze, inklusive des Internets

Anwanduna

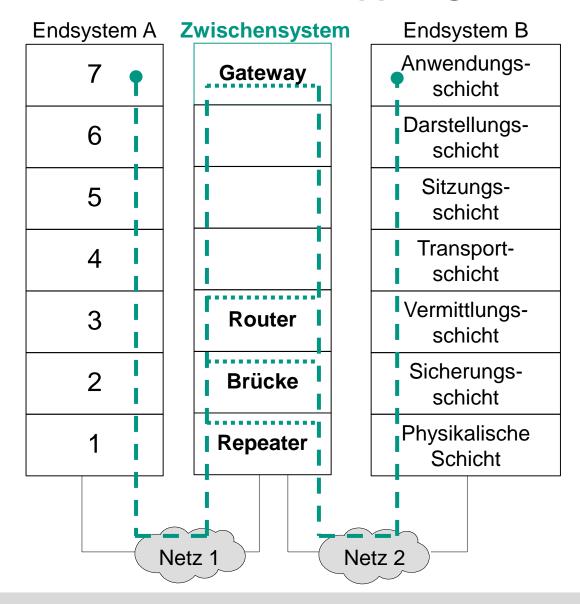
"Bundle Layer"

- Bundle fasst die regionalspezifischen Schichten zusammen
 - Ermöglicht Kommunikation zwischen verschiedenen Regionen

Anwendung	Anwendung		
	Bundle	Über alle DTN Regionen greifend	
Transport	Transport		
Vermittlung	Vermittlung	Spezifisch für jede DTN Region	
Sicherung	Sicherung	OIN Region	
Physikalisch	Physikalisch		
Internet	DTN		

A participal di up a

Kapitelübersicht


- 1. Einführung
- 2. Netzwerkarchitekturen
- 3. Physikalische Grundlagen
- 4. Protokollmechanismen
- 5. Die Sicherungsschicht: HDLC
- 6. Die Sicherungsschicht: Lokale Netze
- 7. Netzkopplung und Vermittlung
- 8. Die Transportschicht
- 9. Sicherheit
- 10. Anwendungssysteme

- 1. Motivation
- 2. Vermittlungstechniken
 - 1. Leitungsvermittlung
 - 2. Paketvermittlung
 - 3. Datagrammvermittlung
 - 4. Virtuelle Verbindungen
 - 5. Nachrichtenvermittlung
- 3. Netzkopplung
 - Repeater
 - 2. Brücke
 - Router
- 4. Vermittlung im Internet

7.3 Ebenen der Netzkopplung

- Schicht 1: Repeater
- Schicht 2: Brücke
- Schicht 3: Router
- Schicht 7: Gateway

Einordnung

Wir befinden uns auf Schicht 1 des OSI-Referenzmodells

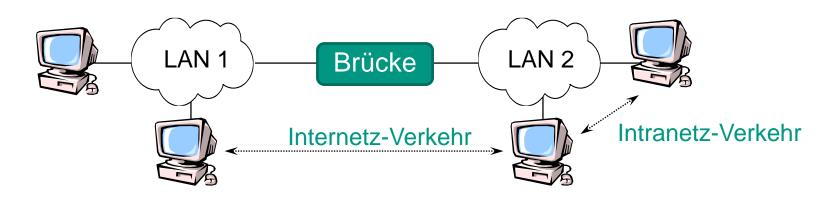
7	Anwendung
6	Darstellung
5	Sitzung
4	Transport
3	Vermittlung
2	Sicherung
1	Bit-Übertragung

7.3.1 Repeater

- Kopplung auf Schicht 1
 - Auffrischung des digitalen Signals
 - Medien können unterschiedlich sein (z.B. von Glasfaser auf Kupfer)
 - Größere (nicht beliebige) physikalische Ausdehnung des Netzes möglich
- Voraussetzung: Protokoll auf Schicht 2 muss identisch sein
 - Keine Zwischenspeicherung
 - Keine Bearbeitung von Dateneinheiten
 - Keine Beeinflussung des Verkehrs zwischen Teilnetzen, alle Dateneinheiten werden weitergeleitet
- Einsatzgebiete, z.B.
 - Ethernet
 - Z.B. Reichweite von max. 500 m pro Segment
 - Ausdehnung durch Einbau von max. 4 Repeatern auf bis zu 2500 m
 - Glasfaser (Überland, Unterwasser)

Einordnung

Wir befinden uns auf Schicht 2 des OSI-Referenzmodells


7	Anwendung	
6	Darstellung	
5	Sitzung	
4	Transport	
3	Vermittlung	
2	Sicherung	
1	Bit-Übertragung	

7.3.2 Brücke

- Ziel: Kopplung von lokalen Netzen (LANs) auf Schicht 2
 - homogen: Netzwerke vom gleichen Typ (z.B. IEEE 802.x mit 802.x)
 - inhomogen: Netzwerke unterschiedlichen Typs (z.B. IEEE 802.x mit 802.y, x≠y)
- Funktion: in beiden Netzen aktiv
 - Nimmt Dateneinheiten in LAN 1 an und versendet Dateneinheiten in LAN 2 erneut, wenn der Empfänger nicht in LAN 1 liegt
 - Verhält sich wie andere Sender (berücksichtigt ggf. belegtes Medium etc.)

Brücke: Eigenschaften

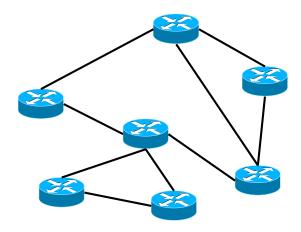
40

- Trennen des Intranetz-Verkehrs in einem LAN von dem Internetz-Verkehr zu anderen LANs (Filterfunktion)
- Erhöhung der Netzkapazität großer Netze durch Partitionierung
- Keine Filterung von Broadcast-Verkehr

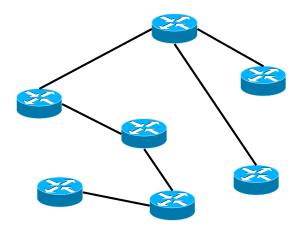
Selbstlernende Switches/Brücken

- Ziel
 - Selbstorganisierende Konfiguration eines Netzes mit Brücken/Switches
 - ... ohne Eingriffe eines Systemadministrators
- Aufgaben
 - Etablierung einer Netztopologie ohne Schleifen
 - → Spanning Tree Algorithmus
 - Etablierung von Wegen zwischen Endsystemen
 - → selbstlernende Brücken

Spanning Tree Algorithmus



- Ziel
 - Aufbau eines minimalen Spannbaums
 - ... hat keine Schleifen



Beispiel

Graph mit Brücken

Ein minimaler Spannbaum

Selbstlernende Brücken

- Ziel
 - "Wege" etablieren
- Vorgehensweise
 - Kein extra Protokoll hierfür
 - Brücke empfängt Dateneinheit und kennt Ziel-Adresse nicht
 - Flutet Dateneinheit auf allen aktiven Interfaces
 - Lernt "Lokation" des Endsystems mit dieser Ziel-Adresse
 - Merkt sich, dass Endsystem über dieses Interface erreichbar ist
 - Brücke kennt Ziel-Adresse
 - Leitet Dateneinheit über entsprechendes Interface weiter

Einordnung

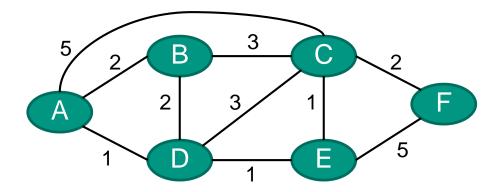
Wir befinden uns auf Schicht 3 des OSI-Referenzmodells

7	Anwendung	
6	Darstellung	
5	Sitzung	
4	Transport	
3	Vermittlung	
2	Sicherung	
1	Bit-Übertragung	

7.3.3 Router

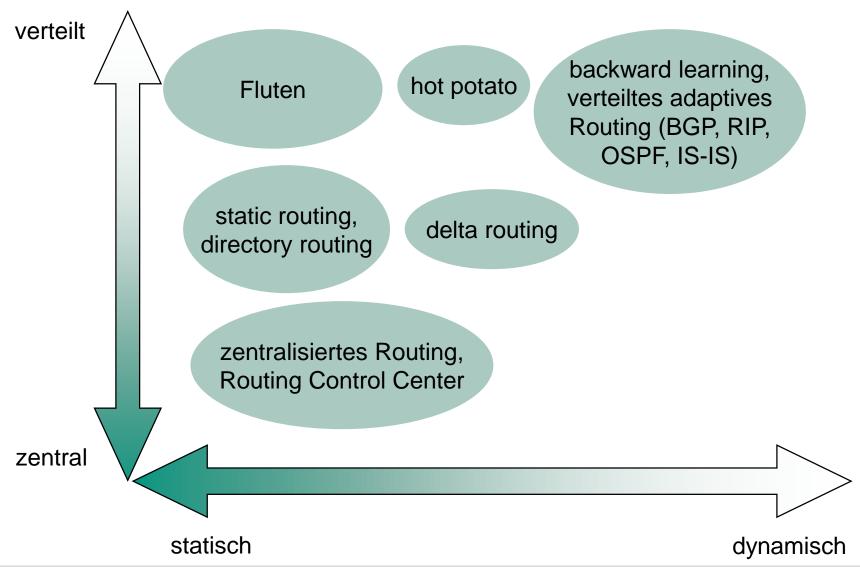
- Ziel
 - Kopplung von (Teil-)Netzen auf Schicht 3
- Eigenschaften
 - Schicht 2-Protokolle der Teilnetze können unterschiedlich sein
 - Teilnetz-übergreifendes Adressierungsschema in Schicht 3
 - Abbildung von Schicht 2 auf Schicht 3-Adressen nötig
 - In der Regel hierarchische Adressierung
 - Filterung von Verkehr möglich, kein Teilnetz-übergreifender Broadcast-Verkehr

Routing


- Ziel: Finden eines "guten" Wegs
 - Typischerweise ist dies der Weg mit den geringsten Kosten
 - Andere Metriken sind denkbar
 - Hier: Betrachtung paketvermittelnder Netze
 - → Aufgabe der Routing-Protokolle

Netz als Graph

- Modellierung des Kommunikationsnetzes als Graph
 - Router (Zwischensysteme) sind Knoten
 - Übertragungsabschnitte sind Kanten
 - "Kosten" der Kanten bspw. Verzögerung, Stausituation, Preis ...


Pfad

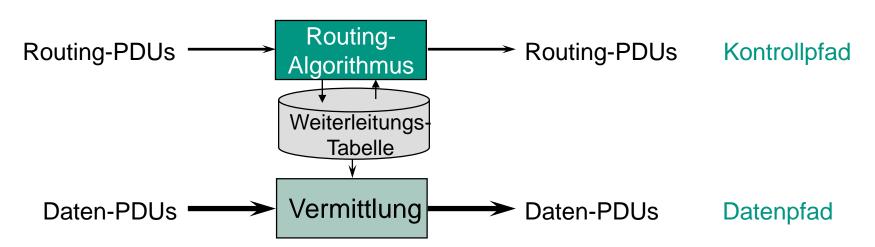
- Folge von Knoten $(n_1, n_2, ..., n_k)$, wobei (n_1, n_2) , (n_2, n_3) , ... (n_{k-1}, n_k) Kanten des Graphs sind und kein Knoten mehrfach vorkommt
- Pfad mit geringsten Kosten vs. kürzester Pfad

Routing-Verfahren im Überblick

Routing-Verfahren: Zentralisierung

- Wo ist der Routing-Algorithmus lokalisiert?
 - Zentral (in einem Netzkontrollzentrum)
 - Zentrale hat Wissen über das komplette Netz
 - Auch als globales Routing bezeichnet
 - Berechnung optimaler Wege möglich
 - Dezentral (verteilt auf die Zwischensysteme)
 - Systeme kennen initial nur ihre Nachbarn
 - Distanz-Vektor-Algorithmen
 - Kein System hat Wissen über das komplette Netz
 - System kennt nie die komplette Route von einer Quelle zu einer Senke
 - Link-State-Algorithmen
 - System hat Wissen über die gesamte Netztopologie
 - Alle Systeme haben (im stabilen Zustand) die gleiche Sicht auf das Netz

Routing-Verfahren: Dynamik


- Wie dynamisch ist das Routing-Verfahren?
 - Nicht adaptiv
 - Routen ändern sich nur sehr selten
 - Routenänderungen sind viel seltener als Verkehrsänderungen
 - Adaptiv
 - Routen ändern sich in Abhängigkeit des Verkehrs bzw. der Netztopologie
 - Aktueller Zustand des Netzes wird damit berücksichtigt
 - Schleifen und Oszillationen in Routen wahrscheinlicher als bei nicht- adaptiven Verfahren
 - Können periodisch operieren oder in direkter Reaktion auf Änderungen
 - Zielkonflikt
 - Systeme haben veraltete oder unvollständige Informationen über den Zustand des Netzes
 - Evtl. hohe Belastung durch Austausch von Routing-Informationen

Router - Kontroll- vs. Datenpfad

- Datenpfad
 - Vermittlung der Daten auf Schicht 3 (Vermittlungsschicht)
- Kontrollpfad
 - Steuert Vermittlung der Daten
 - Weiterleitungs-Tabelle
 - Enthält Einträge für mögliche Ziele mit Schnittstellen, auf denen Dateneinheiten zum nächsten Zwischensystem in Richtung Ziel weitergeleitet werden
 - Routing-Protokolle sind oberhalb der Schicht 3 angesiedelt
 - Vermittlung/Weiterleitung der Dateneinheiten anhand der Information in der Weiterleitungs-Tabelle

Statisches Routing – Beispiel

- Beispiel
 - Ziehen einer Zufallszahl x mit $1 > x \ge 0$
 - Falls x < 0.6 dann Weiterleiten nach B
 - Falls $0.9 \ge x \ge 0.6$ dann Weiterleiten nach C
 - Sonst Weiterleiten nach D

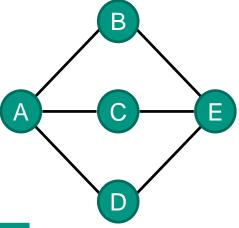
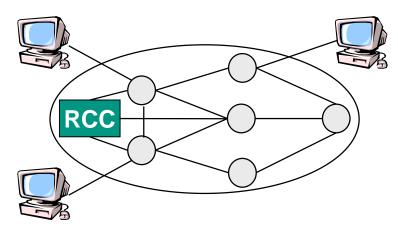


Tabelle in System A


Ziel	1. Wahl		2. Wahl		3. Wahl	
	System	Gewicht	System	Gewicht	System	Gewicht
Е	В	0,6	С	0,3	D	0,1
÷	i i	÷	÷	÷	:	:

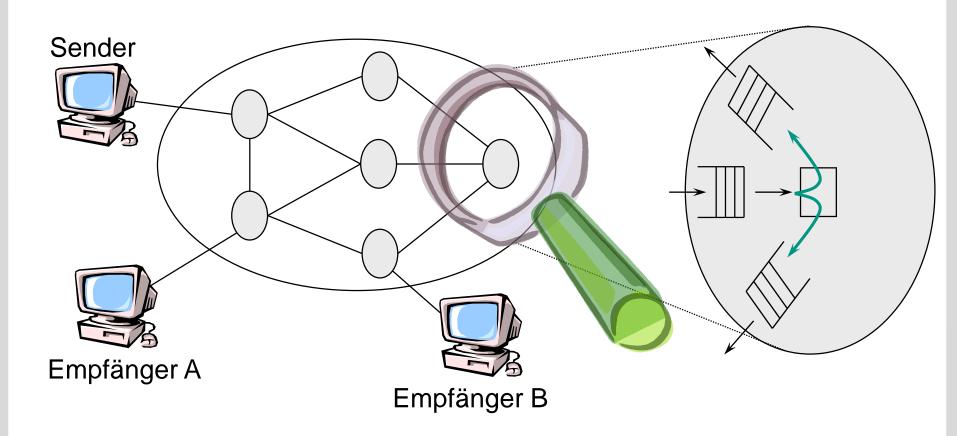
Zentralisiertes Routing

- Adaptives Verfahren
- Zentrales Routing Control Center (RCC)
 - Jedes System sendet periodisch Zustandsinformationen an RCC
 - Z.B. Liste aller aktiven Nachbarn
 - Aktuelle Warteschlangenlängen
 - Umfang an Verkehr, der seit dem letzten Bericht abgewickelt wurde
 - RCC berechnet mit diesen Informationen die optimalen Wege zwischen allen Systemen (z.B. kürzeste Wege)
 - RCC verteilt neue Routing-Information an Router
 - Jeder Router trifft Routing-Entscheidungen anhand dieser Information

Zentralisiertes Routing – Vor- und Nachteile

- Vorteile
 - RCC hat theoretisch die vollständige Übersicht und kann perfekte Entscheidungen treffen
 - Systeme müssen keine aufwendigen Routing-Berechnungen durchführen
- Nachteile
 - Für große Netze dauert die Berechnung u.U. sehr lange
 - Ausfall des RCC lähmt das ganze Netz
 - Erfordert daher möglichst robuste Auslegung
 - z.B. durch Redundanz, etwa Backup-Rechner, etc.
 - Inkonsistenzen möglich, da Systeme nahe dem RCC neue Routing-Tabellen wesentlich früher erhalten als die weiter entfernten
 - Starke Belastung des RCC durch die zentrale Funktion

Isoliertes Routing: Überblick

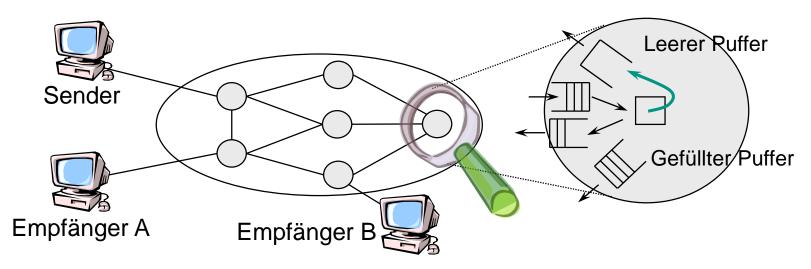

- Jedes System entscheidet nur aufgrund der Information, die es selbst sammelt
- Kein Austausch von Routing-Informationen zwischen den Systemen
- Anpassung an Verkehrs- und Topologieänderungen kann somit nur mit Hilfe beschränkter Informationen erfolgen
- Unterschiedliche Verfahren, z.B.
 - Fluten
 - Hot Potato

Fluten

- Einfachstes Verfahren, nicht adaptiv
- Jede eingehende Dateneinheit wird auf jeder Übertragungsleitung weiter übertragen, außer auf derjenigen, auf der es eintraf

Fluten

- Maßnahmen zur Eindämmung der Flut
 - Erkennung von Duplikaten durch Sequenznummern
 - Kontrolle der Lebensdauer einer Dateneinheit durch Zählen der zurückgelegten Übertragungsabschnitte (Hops)
 - Hop-Zähler wird mit der maximaler Weglänge initialisiert
 - In jedem Router wird der Zähler um 1 dekrementiert
 - Falls der Zähler den Wert 0 erreicht, kann die Dateneinheit verworfen werden
- Varianten
 - Selektives Fluten
 - Weiterleitung nicht auf allen, sondern nur auf einigen Übertragungsabschnitten
 - Random Walk
 - Zufällige Auswahl eines Übertragungsabschnittes
- Einsatzbeispiele
 - Mobile Ad-hoc-Netze (MANETs)
 - Jedes System ist Endsystem und gleichzeitig Router
 - Drahtlose Sensor-Aktor-Netze im Internet of Everything
 - Daten stehen im Mittelpunkt des Interesses



Hot Potato

- Jedes System versucht, eingehende Dateneinheiten so schnell wie möglich weiterzuleiten
 - Wählt Übertragungsabschnitt mit der kürzesten Warteschlange
- Varianten
 - Weiterleitung nie auf dem Übertragungsabschnitt, auf dem die Dateneinheit eintraf
 - Kombination mit statischem Routing
 - Auswahl der besten Übertragungsleitung nach statischem Verfahren, solange Warteschlangenlänge unter bestimmtem Schwellenwert bleibt
 - Auswahl der Übertragungsleitung mit kürzester Warteschlange, falls deren statisches Gewicht nicht zu niedrig ist

Verteiltes adaptives Routing

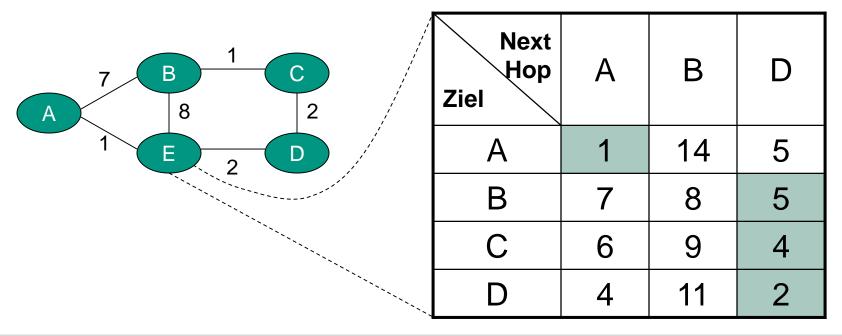
- Systeme tauschen Routing-Informationen mit Nachbarn aus
- Jedes System unterhält eine Routing-Tabelle. Enthält Informationen über zu erreichende Systeme, z.B.
 - Bevorzugter Übertragungsabschnitt zum Ziel
 - Schätzung über Zeit oder Entfernung zum Ziel, z.B.
 - Anzahl Hops
 - Geschätzte Verzögerung in Millisekunden
 - Geschätzte Anzahl von Dateneinheiten, die entlang des Weges warten
- Schätzungen werden gewonnen aus
 - Zeit oder Entfernung zu den Nachbarn
 - z.B. aus speziellen Echo-Dateneinheiten mit Zeitstempeln
 - Schätzungen der Nachbarn
- Varianten
 - Periodischer Austausch von Routing-Information
 - Austausch nur bei signifikanten Änderungen

Routing-Algorithmen

- Distanz-Vektor-Algorithmen
 - Routing-Metrik: Distanz
 - Jeder Router kennt Distanz zu allen anderen Systemen im Netz
 - Hierzu werden die aktuellen Distanzen zwischen den Nachbarn ausgetauscht
 - Problem
 - Kürzerer langsamerer Weg wird längerem schnelleren Weg vorgezogen
 - Beispiele
 - Routing Information Protocol (RIP), Distance Vector Routing Protocol (DVRP)
- Link-State-Algorithmen
 - Unterschiedliche Routing-Metriken möglich
 - Berücksichtigt die aktuellen Zustände der Netzanschlüsse
 - Jeder Router kennt komplette Netztopologie und berechnet auf dieser Basis seine Routing-Information
 - Link-State-Algorithmen konvergieren im Allg. schneller als Distanz-Vektor-Algorithmen
 - Für größere Netze sind sie damit potenziell besser geeignet
 - Beispiele
 - Open Shortest Path First (OSPF), Intra-Domain Intermediate System to Intermediate System Routing Protocol (IS-IS)

7.3.3.1 Distanz-Vektor-Routing

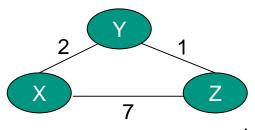
- Eigenschaften
 - Verteilt
 - Jeder Router erhält Information von seinen direkten Nachbarn, führt eine Berechnung durch und verteilt dann neue Information an seine Nachbarn
 - Iterativ
 - Das Verteilen und Berechnen von Information geht so lange vor sich bis keine Information mehr ausgetauscht wird
- Distanz-Vektor-Tabelle
 - Die grundlegende Datenstruktur für Distanz-Vektor-Algorithmen
 - In jedem System vorhanden
 - Zeile für jedes mögliche Ziel
 - Spalte f
 ür jeden direkten Nachbarn
 - Weiterleiten von Daten
 - X will Daten über seinen direkten Nachbarn Z an Y weiterleiten


$$D^{X}(Y,Z) = c(X,Z) + \min_{w} \{D^{Z}(Y,w)\}$$

Beispiel: Distanz-Vektor-Tabelle

- Beispiel: $D^E(A, D)$
 - Erster Übertragungsabschnitt ist der von E nach D
 - Eintrag in der Tabelle umfasst Kosten von E nach D (2) plus minimale Kosten von D nach A (3)
 - Minimale Kosten von D nach A über Nachbarsystem von D
 - Wie kommt der Wert von 14 für $D^E(A, B)$ zustande?

Distanz-Vektor-Algorithmus



- Initialisierung
 - Für alle Nachbarn $v: D^X(*,v) = \infty, D^X(v,v) = c(X,v)$
 - Für alle Ziele y: sende $\min_{w} D^{w}(y, w)$ zu jedem Nachbarn, wobei w alle Nachbarn enthält
- Schleife
 - Geänderte Übertragungsabschnittskosten: c(X, V) ändert sich um den Wert d (positiv oder negativ)
 - Für alle Ziele $y: D^X(y,V) := D^X(y,V) + d$
 - Update-Nachricht von einem Nachbarn
 - Kürzester Pfad von V zu einem Ziel Y hat sich geändert zu "neuer Wert"
 - $D^X(Y,V) = c(X,V) +$ "neuer Wert" für dieses Ziel
 - Falls ein neuer $\min D^w(Y, w)$ für ein Ziel Y existiert, dann sende diesen Wert zu allen Nachbarn
- Nomplexität: $O(n^3)$ mit n = Anzahl der Knoten
- Betrachteter Algorithmus: Bellman-Ford-Algorithmus

Beispiel

Annahme: Systeme arbeiten synchron

 t_1

 t_2

 t_3

System X

DX	Υ	Z
Υ	2	8
Z	8	7

DX	Y	Z
Υ	2	8
Z	3	7

DX	Υ	Z
Y		
Z		

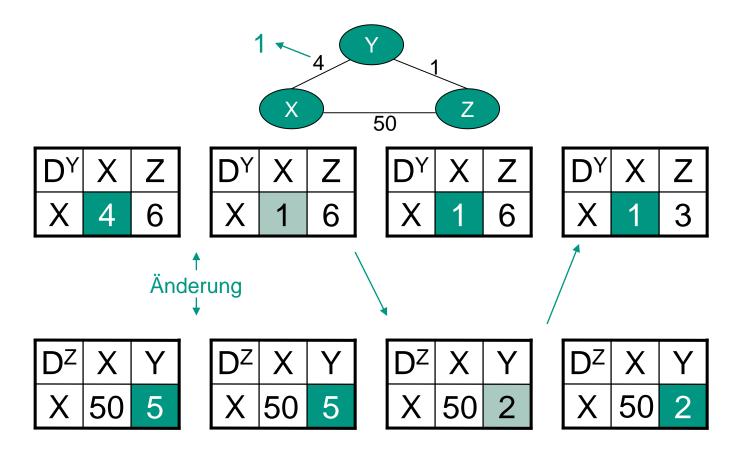
System Y

D^Y	X	Z
Χ	2	8
Z	8	1

D ^Y	X	Z
Х	2	8
Z	9	1

D^Y	X	Z
X		
Z		

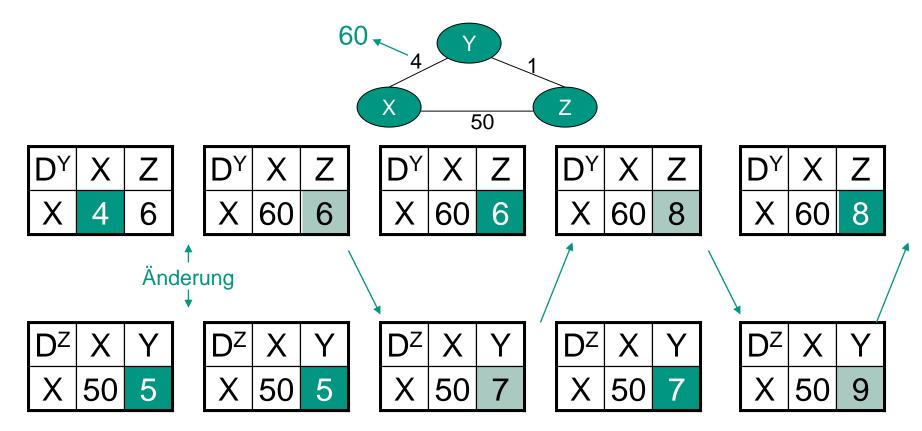
System Z


D ^Z	X	Υ
Х	7	8
Υ	8	1

D ^Z	X	Υ
Х	7	3
Υ	9	1

D ^Z	X	Υ
Χ		
Υ		

Änderung der Linkkosten: Good News



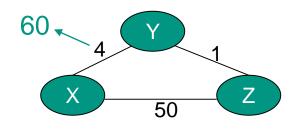
→ Die gute Neuigkeit hat sich schnell im Netz ausgebreitet

Änderung der Linkkosten: Bad News

- Schlechte Neuigkeit breitet sich relativ langsam aus und führt u.U. zu Routing-Schleifen
- Schleife hier benötigt 44 Iterationen!
- → Count-to-Infinity

Count-to-Infinity-Problem

			Ziel	Distanz	Nächstes System	Schnittstelle
			Α	2	Router 1	1
				•••	•••	
А						
Router 1 Router 2						
	Ziel	Distanz	Nächst	es Systen	n Schnittstelle	
	Α	3	Ro	outer 2	1	
		•••				


Zur Vermeidung: Poisonous Reverse

Poisonous Reverse

- Ziel
 - Vermeidung von den zuvor beschriebenen Routing-Schleifen
- Vorgehensweise
 - Routing-Information wird Y "vorenthalten", wenn Weg über Y kürzer

D^Y	X	Ζ
X	4	8

D^Y	X	Z
X	60	8

D^Y	X	Z
X	60	8

D^Y	X	Z
X	60	51

D^Y	X	Z
X	60	51

Weg über Z kürzer:

D^Z X Y X 50 5

D ^Z	X	Y
X	50	5

D^Z	X	Y
X	50	61

D^Z	X	Υ
X	50	61

D ^Z	X	Y
X	50	8

7.3.3.2 Link-State-Routing

- Grundlegende Vorgehensweise
 - Systeme müssen am Anfang nur ihre direkten Nachbarn kennen
 - Entdecken neuer Nachbarn mittels spezieller Dateneinheiten
 - z.B. HELLO
 - Bestimmen der Kosten zu den direkten Nachbarn
 - Link State Broadcast
 - Identität und Kosten zu den direkten Nachbarn werden an alle Router im Netz weitergeleitet (Fluten)
 - Systeme k\u00f6nnen Topologie lernen durch die Link State Broadcasts der anderen Systeme
 - Ergebnis: Alle Systeme haben identisches Wissen über das Netz

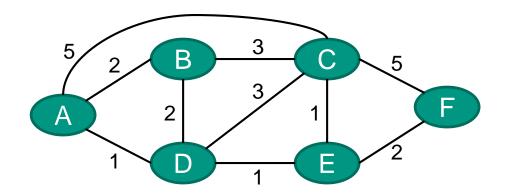
Link-State-Routing

- Berechnung der kürzesten Pfade durch Link-State-Algorithmus
 - Jedes System berechnet die kürzesten Pfade
 - Die berechneten Pfade sind aufgrund der identischen Information gleich
 - Nach Fluten und Berechnung der kürzesten Pfade in jedem System ist das Netz schleifenfrei und in stabilen Zustand konvergiert
- Im folgenden betrachteter Algorithmus Dijkstra-Algorithmus
 - Berechnet Pfad mit den geringsten Kosten von einem System zu allen anderen Systemen im Netz
- Link-State Routing wird eingesetzt in den Protokollen
 - OSPF (Open Shortest Path First) und
 - IS-IS (Intermediate System to Intermediate System)

Dijkstra Algorithmus

- Notation
 - c(i,j): Kosten von System i zu System j
 - Annahme: c(i,j) = c(j,i)
 - Falls *i* und *j* nicht direkt verbunden, gilt initial: $c(i,j) = \infty$
 - D(v)
 - Nosten der Route von der Quelle zur Senke v, die momentan die geringsten Kosten besitzt
 - p(v)
 - Vorgänger von v auf dem momentan kürzesten Pfad zu v
 - \blacksquare N
 - Menge der Systeme, deren kürzester Pfad von der Quelle bekannt ist

Dijkstra Algorithmus



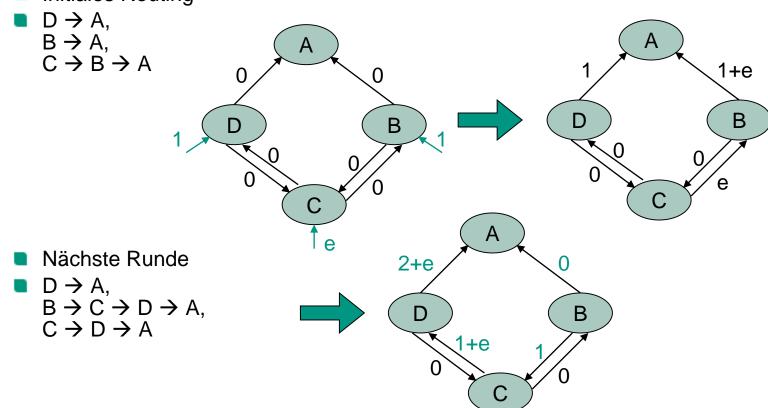
- Initialisierungsphase
 - $N = \{\text{Quelle }A\}, D(v) = c(A, v) \text{ für alle direkten Nachbarn von }A,$ $D(v) = \infty \text{ sonst}$
- Schleife (wird entsprechend der Anzahl von Systemen im Netz durchlaufen)
 - Finde ein System w mit $w \notin N$ und D(w) ist ein Minimum
 - Füge w zu N hinzu
 - Erneuere D(v) für alle $v \notin N$ und v ist direkter Nachbar von w
 - $D(v) = \min(D(v), D(w) + c(w, v))$
- Nomplexität: $O(n^2)$ mit n = Anzahl der Knoten
 - Je nach Implementierung auch $O(n \log n + m)$ mit m = Anzahl der Kanten

Link-State-Routing: Beispiel

Schritt	N	D(B), $p(B)$	p(C), $p(c)$	$egin{aligned} D(D),\ p(D) \end{aligned}$	D(E), $p(E)$	D(F), $p(F)$
0	A	2, A	5, A	1, A	∞	∞
1	AD		4, D		2, D	∞
2	ADE		3, E			4, E
3	ADEB					
4	ADEBC					
5	ADEBCF					

Beispiel

- Initialisierung
 - Die momentan bekannten kürzesten Pfade zu den Nachbarn von A werden gesetzt entsprechend der jeweiligen Link-Kosten (2, 5, 1)
 - Die Pfade zu nicht direkt benachbarten Systemen werden auf ∞ gesetzt
- Erste Iteration
 - System mit den geringsten Kosten wird zu N hinzugenommen: D
 - lacktriangleq D(v) wird für alle Systeme erneuert
 - Kosten zu C und E senken sich
- Zweite Iteration
 - System mit den geringsten Kosten wird zu $N = \{A, D\}$ hinzugenommen: E
 - B wäre ebenfalls möglich gewesen
 - lacktriangleq D(v) wird für alle Systeme erneuert
 - Kosten zu C senken sich und F ist erstmals mit Kosten geringer als ∞ erreichbar


...

Oszillation

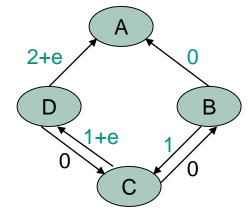
- Beispielnetz
 - Linkkosten sind äquivalent zur Last auf dem Weiterleitungsabschnitt
 - Die Linkkosten sind hier nicht symmetrisch
 - Die Quellen B, C, und D senden 1, e bzw. 1 "Verkehrseinheiten"
 - Initiales Routing

Oszillation

- Nächste Runde
 - Systeme B, C und D entdecken Pfad mit Kosten 0 zu A

... Und die nächste Runde

 $\begin{array}{c} \blacksquare & D \rightarrow C \rightarrow B \rightarrow A, \\ B \rightarrow A, \\ C \rightarrow B \rightarrow A \end{array}$



D D B B 1+e

 $\begin{array}{c} \bullet & \mathsf{D} \to \mathsf{A}, \\ \mathsf{B} \to \mathsf{C} \to \mathsf{D} \to \mathsf{A}, \\ \mathsf{C} \to \mathsf{D} \to \mathsf{A} \end{array}$

- Was tun?
 - Router sollten nicht alle zum gleichen Zeitpunkt den Algorithmus berechnen
 - "Self-Synchronization" sollte möglichst vermieden werden
 - Einführung von Zufälligkeiten ("Randomization")

Link-State vs. Distanz-Vektor

- Komplexität der Kontroll-Dateneinheiten
 - Jedes System muss bei Link-State die Kosten aller Links kennen: Bei n Systemen und E Links sind O(nE) Dateneinheiten erforderlich
 - Änderungen müssen bei Link-State an alle Systeme gesendet werden
 - Bei Distanz-Vektor werden Änderungen benachbarten Systeme weitergegeben
- Konvergenzgeschwindigkeit
 - Link-State hat eine Komplexität von $O(n^2)$ und benötigt O(nE) Dateneinheiten
 - Schnelle Konvergenz, danach schleifenfrei
 - Oszillationen sind möglich
 - Distanz-Vektor-Algorithmen können langsam konvergieren und können Routing-Schleifen aufweisen
 - Das Count-to-Infinity-Problem kann auftreten
- Robustheit
 - Routenberechnungen sind bei Link-State separiert und stellen somit eine gewisse Robustheit bereit
 - Bei Distanz-Vektor-Algorithmen kann ein System inkorrekte Pfade zu allen Zielen verbreiten
- Gewinner?
 - Link-State konvergiert schneller und ist robuster
 - Distanz-Vektor einfacher zu implementieren

Kapitelübersicht

- 1. Einführung
- 2. Netzwerkarchitekturen
- 3. Physikalische Grundlagen
- 4. Protokollmechanismen
- 5. Die Sicherungsschicht: HDLC
- 6. Die Sicherungsschicht: Lokale Netze
- 7. Netzkopplung und Vermittlung
- 8. Die Transportschicht
- 9. Sicherheit
- 10. Anwendungssysteme

- 1. Motivation
- 2. Vermittlungstechniken
 - 1. Leitungsvermittlung
 - 2. Paketvermittlung
 - 3. Datagrammvermittlung
 - 4. Virtuelle Verbindungen
 - 5. Nachrichtenvermittlung
- 3. Netzkopplung
 - Repeater
 - 2. Brücke
 - 3. Router
- 4. Vermittlung im Internet

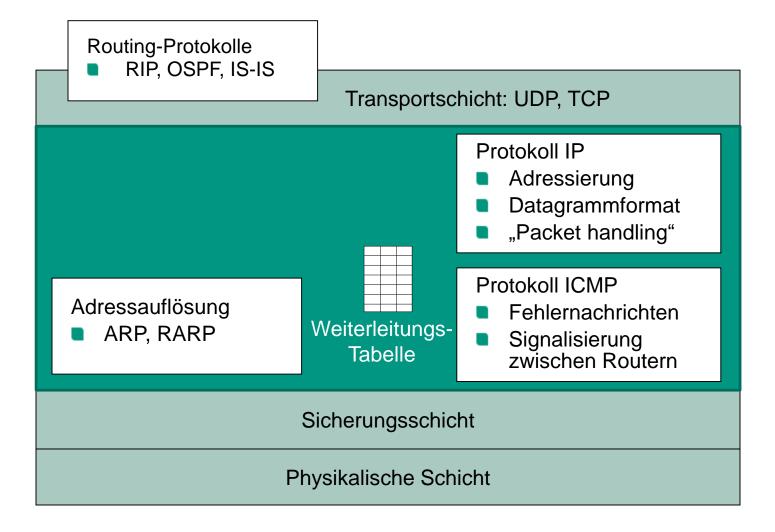
7.5 Vermittlung im Internet

- Problem
 - Wie werden Daten im Internet weitergeleitet?
- Verfahren
 - Weiterleitungs-Tabelle liefert Information über nächsten Hop
 - IP-Protokoll
 - Verbindungslos
 - Segmentiert und reassembliert
 - In allen Systemen?
 - Benutzt Internet-Adressierung
 - Unterschied zur MAC-Adressierung?
 - Benutzt weitere Protokolle wie
 - ICMP (Internet Control Message Protocol)
 - ARP (Address Resolution Protocol)
 - IGMP (Internet Group Management Protocol)

Pingo

- Pingo-Link für diese Vorlesung:
- → http://pingo.upb.de/6466

Pingo



http://pingo.upb.de/

Ein Blick in die Vermittlungsschicht des Internet

Aufgaben der Protokolle

- TCP (Transmission Control Protocol)
 - Stellt zuverlässigen Transportdienst bereit
- UDP (User Datagram Protocol)
 - Stellt unzuverlässigen Transportdienst bereit
- IP (Internet Protocol)
 - Unzuverlässige Übertragung/Weiterleitung von Datagrammen
- ICMP (Internet Control Message Protocol)
 - Austausch von Kontrollinformationen innerhalb der Vermittlungsschicht
- IGMP (Internet Group Management Protocol)
 - Verwaltung von Kommunikationsgruppen
- ARP (Address Resolution Protocol)
 - Zuordnung von IP-Adressen zu Adressen der Sicherungsschicht
- RARP (Reverse Address Resolution Protocol)
 - Stellt Umkehrfunktion von ARP zur Verfügung
- Routingprotokolle
 - BGP (Border Gateway Protocol), RIP (Routing Information Protocol), OSPF (Open Shortest Path First)

Einschub: Adressierung im Internet

- Ziel
 - Eindeutige Identifizierung aller im Internet angeschlossenen Systeme bzw. deren einzelner Schnittstellen
 - Ein System kann mehrere Interfaces haben (z.B. Ethernet, WLAN, UMTS)
- IP-Adressen
 - Weltweit eindeutige Adressen auf Schicht 3
 - Einfaches, für Maschinen leicht zu verarbeitendes Format
 - IPv4
 - Adressen einer Länge von 32 Bit
 - IPv6 KNGI
 - Größerer Adressraum durch Adressen von 128 Bit Länge

Adressierung bei IPv4

Ursprünglich unterstützte IP fünf verschiedene Adressklassen

Class A für Netze mit mehr als 65.536 Systeme

0	1	2	4	8	16	24	
0			Netz-ID		Sys	tem-ID	

Class B für Netze zwischen 256 und 65.536 Systeme

0	1	2	4	8	16	24	
1	0		Netz-ID		S	System-ID)

Class C für Netze mit weniger als 256 Systeme

Class D für Gruppenkommunikation (Multicast)

0	1	2	4	8	16	24	
1	1	1	0	Multic	ast-Adre	esse	

Class E, reserviert für zukünftige Anwendungen

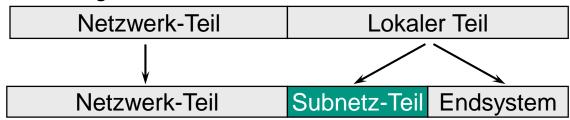
0	1	2		4	8	16	24	
1	1	1	1	0		Reservie	rt	

- Diese Form der Adressierung wird heute nicht mehr direkt eingesetzt
 - Stattdessen Classless Interdomain Routing (CIDR)

Classless Inter-Domain Routing

- Bisher: Drei Adressklassen für Unicast, somit schlechte Ausnutzung durch ungenutzte Adressen ("Verschnitt"), z.B.:
 - Größeres Netz mit mehr als 254 Komponenten benötigt Class-B-Adresse
 - Kleines Netz mit 100 IP-Adressen, benötigt Class-C-Adresse
 - 254 Adressen wären verfügbar, damit 154 ungenutzte Adressen

CIDR


- Ersetzen der festen Klassen durch Präfixe variabler Länge
 - Beispiele
 - 129.24.12.0/14: Die ersten 14 Bits der IP-Adresse werden für die Netz-Identifikation verwendet
 - 141.3.64.0/21 = 141.3.64.0 bis 141.3.71.255
 - Einsatz in Verbindung mit hierarchischem Routing
 - Backbone-Router, z.B. an Transatlantik-Link, betrachtet z.B. nur die ersten 13 Bits; dadurch kleine Routing-Tabellen, wenig Rechenaufwand
 - Router eines angeschlossenen Providers z.B. die ersten 15 Bit
 - Router in einem Firmennetz mit 126 Hosts betrachtet 25 Bits

Subnetz-Adressen bei IPv4

Weitere Strukturierung von IP-Adressen

- Subnetzmasken kennzeichnen den Bereich der IP-Adresse, der das Netzwerk und das Subnetzwerk beschreibt. Dieser Bereich wird dabei durch Einsen ("1") in der binären Form der Subnetzmaske festgestellt
- Beispiel

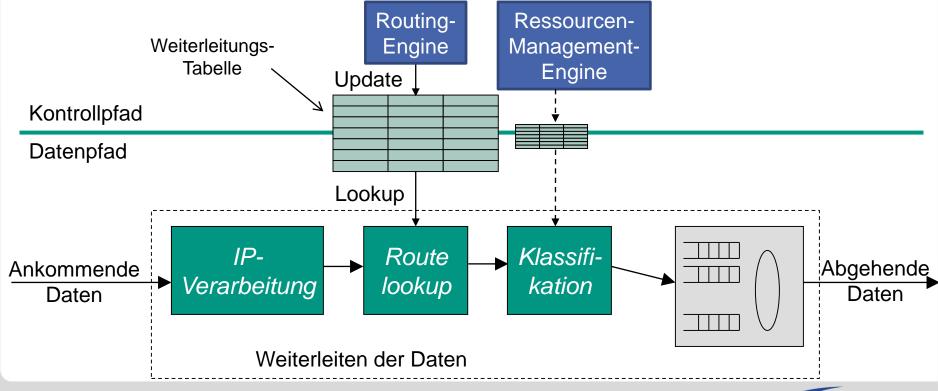
IP-Adresse:	129.	13.	3.	64
Subnetzmaske:	255.	255.	255.	0
=	1111 1111	1111 1111	1111 1111	0000 0000
Netzwerk:	129.	13.		(Class B)
Subnetz:			3.	
Endsystem:				64

- Überdeckt die Subnetzmaske nur den Netzwerk-Teil, dann gibt es keinen Subnetz-Teil (z.B. Subnetzmaske 255.255.0.0 bei Class B)
- Achtung: Systeme, die an mehrere Netze angeschlossen sind (z.B. Router), haben mehrere, netzspezifische IP-Adressen

Zuteilung von Adressen

- Es lassen sich die beiden folgenden Varianten unterscheiden
 - Manuelle Konfiguration
 - Dynamische Konfiguration
 - Dynamic Host Configuration Protocol (DHCP)
 - DHCP-Server liefert bei Anfrage eine IP-Adresse zurück an den Client

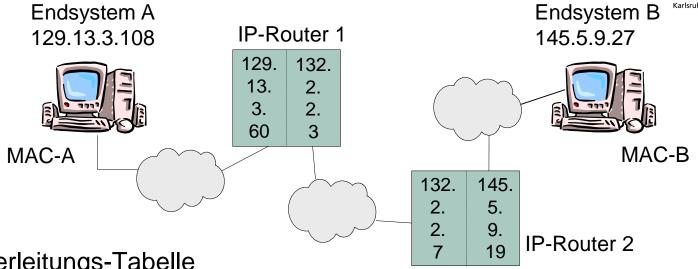
Zuteilung von Adressenblöcken


- Wie erhält ein Provider seinen Block von Adressen?
 - Verwaltung der IP-Adressen unterliegt der "Internet Assigned Numbers Authority" (IANA)
 - Diese untersteht "Internet Corporation for Assigned Names and Numbers" (ICANN)
 - Delegation an regionale Registrierungen ("Regional Internet Registries", RIRs), z.B.
 - APNIC (Asia Pacific Network Information Centre) Asien/Pazifik
 - ARIN (American Registry for Internet Numbers) Nordamerika
 - RIPE NCC (Réseaux IP Européens) Europa, Mittlerer Osten und Zentralasien

Das Internet Protocol (IP)

- IP (Internet Protocol): "Das" Protokoll im Internet
 - Verbindungsloser und unzuverlässiger Dienst
 - Kein IP-basierter Kontext in End- und Zwischensystemen
 - Verantwortlich für das Weiterleiten von Dateneinheiten im Internet
 - Dateneinheiten werden hier als IP-Datagramme bezeichnet

Weiterleitung in IP

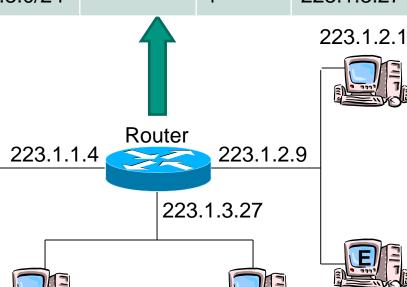


- Für ein Endsystem
 - Ist Rechner mit Zieladresse direkt mit dem Endsystem verbunden (Punktzu-Punkt oder gleiches lokales Netz), wird die IP-Dateneinheit direkt zu diesem Empfänger geschickt
 - Ansonsten wird die Dateneinheit an ein voreingestelltes Zwischensystem (Default-Router) weitergegeben
- Grundlage für die Weiterleitung: Weiterleitungs-Tabelle mit
 - Angabe der Zieladresse (Endsystem- oder Netzadresse)
 - Angabe des "Next-Hop" Routers
 - Flags, welche die beiden oberen Angaben genauer klassifizieren
 - Angabe der Netzschnittstelle, auf die eine für die Zieladresse bestimmte Dateneinheit ausgegeben werden soll

Weiterleiten im IP-Router

- Weiterleitungs-Tabelle
 - Erstellt von Routing-Protokollen
 - IP-Adresse des n\u00e4chsten Systems und Kennung des Ausgangs
- Adressumsetzungstabelle
 - Erstellt von ARP
 - MAC-Adresse des n\u00e4chsten Systems f\u00fcr IP-Adresse des Endsystems
- Beispiel
 - Ziel: Endsystem B; Quelle: Endsystem A
 - Dateneinheit auf dem Weg von Router 1 und Router 2:
 - MAC-Adressen: MAC-Adresse IP-Router 2 (Ziel) und MAC-Adresse IP-Router 1 (Quelle)
 - IP-Adressen: Endsystem B (Ziel), Endsystem A (Quelle)
 - Beachte: IP-Adresse von IP-Router 2 wird in der Dateneinheit nicht transportiert

Tabellen-Lookup


Aufgabe: Identifikation des nächsten Systems auf dem Weg zum Ziel

Ziel-Netz	Nächster Router	Anzahl Hops	Interface
223.1.1.0/24	-	1	223.1.1.4
223.1.2.0/24	_	1	223.1.2.9
223.1.3.0/24	_	1	223.1.3.27

Ziel-Netz	Nächster Router	Anzahl Hops
223.1.1.0/24		1
223.1.2.0/24	223.1.1.4	2
223.1.3.0/24	223.1.1.4	2

223.1.2.2

223.1.3.2

Format einer IPv4-Dateneinheit

Versi	on (4)	Header Length (4)			
	DSCP* (6)		ECN** (2)		
	Total Le	ength (16)			
	Identi	fier (16)			
Flags (3)	Fra	gment Offse	t (13)		
	Time to	Live (8)			
	Proto	ocol (8)			
	Header Ch	ecksum (16)			
	Source Address (32)				
	Destination Address (32)				
Opti	Options and Padding (variabel)				
	Data (variabel)				

- * Differentiated Services Code Point
 - Kodiert Weiterleitungsklasse für die Erfüllung von Dienstgüte-Anforderungen (Quality of Service)
- ** Explicit Congestion Notification
 - Explizite Signalisierung von Stausituationen

Segmentieren und Reassemblieren

- Anpassung an verschieden lange maximale Längen der Dateneinheiten unterliegender Netze
- Vorgehensweise
 - Flag-Felder des IP-Kopfes werden verwendet

Bit 0: reserviert, muss 0 sein

Bit 1: 0 = darf fragmentiert werden

1 = darf nicht fragmentiert werden

Bit 2: 0 = letztes Fragment

1 = es folgen weitere Fragmente

Fragment-Offset: Stelle, an der empfangenes Fragment in ursprüngliche Dateneinheit eingesetzt werden muss (Basiseinheit: 8 Bytes)

Beispiel

Datagramm-Kopf		Daten (1	400 Bytes)	
Fragmentkopf 1	Daten 1		Fragment-Offset: 0	
Fragmentkopf 2	Dat	en 2	Fragment-Offset: 75	
Fragmentkopf 3	Daten 3		Fragment-Offset: 150	

Empfang einer IP-Dateneinheit

- Folgende Überprüfungen werden durchgeführt
 - Korrekte Länge des Kopfes?
 - IP-Versionsnummer?
 - Korrekte Datagrammlänge?
 - Prüfsumme?
 - Lebenszeit?
 - Protokoll-Identifikation?
 - Adressklasse (Quell- und Zieladresse)?
- Falls ein Fehler erkannt wird
 - Benachrichtigung von ICMP (Internet Control Message Protocol)
 - D.h. ICMP wird hier als Funktion aus IP aufgerufen
 - Reagiert möglicherweise mit dem Aussenden einer ICMP-Dateneinheit

Pingo

http://pingo.upb.de/

Das Protokoll ARP

- Ziel-System im gleichen IP-Subnetz: Zustellung über Schicht 2
- ARP: Address Resolution Protocol
 - Ist für die Abbildung zwischen IP-Adressen und MAC-Adressen verantwortlich
- Kopf der ARP-Dateneinheit

Netzwe	rk-Typ	Protokoll-Typ			
HLEN	PLEN	Betriebs-Code			
MAC-Adresse des Senders					
MAC-A	Adresse	IP-Adresse			
des S	enders	des Senders			
IP-Ad	resse	MAC-Adresse			
des Se	enders	des Empfängers			
MAC-Adresse des Empfängers					
IP-Adresse des Empfängers					

Netzwerk-Typ: 1 = Ethernet;

6 = IEEE 802.2

Protokoll-Typ: 2048 = IP

HLEN: 2 = 16-Bit MAC-Adresse

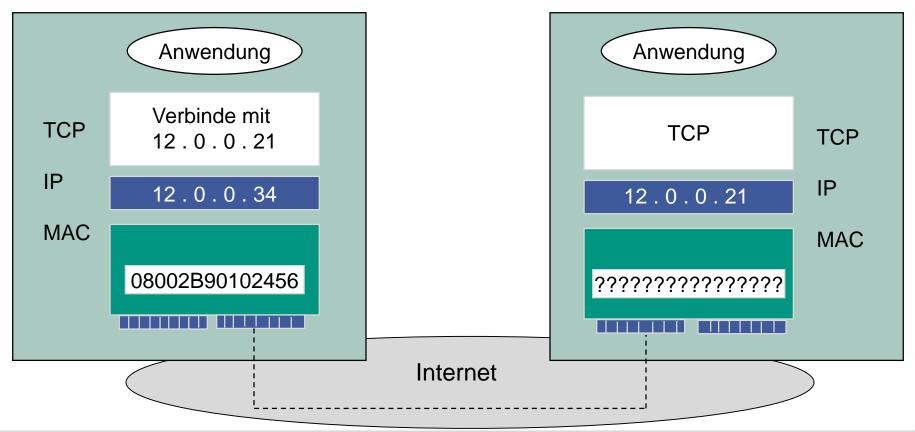
6 = 48-Bit MAC-Adresse

PLEN: 4 = 32-Bit IP-Adresse

Betriebs-Code: 1 = Request;

2 = Reply

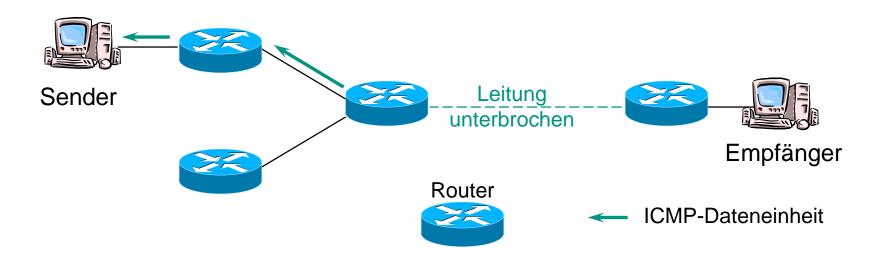
HLEN: Header Address Length PLEN: Protocol Address Length


32 Bit

Zuordnung von IP- und MAC-Adressen

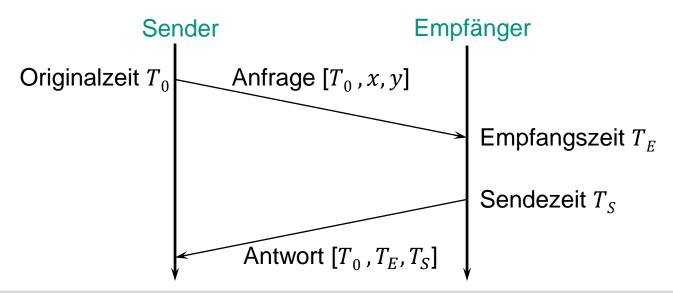
- Wenn (Ziel-IP-Adresse AND Subnetzmaske) gleich (Eigene IP-Adresse AND Subnetzmaske)
 - Zielsystem ist im gleichen IP-Subnetz
- Welche MAC-Adresse hat das n\u00e4chste System?

Adressauflösung mit ARP


- Dynamisches Lernen von Adresszuordnungen
 - Kleine Tabellen (ARP-Cache bzw. ARP-Table)
 - Maximale Lebensdauer der Einträge (typischerweise 20 Minuten)
 - Hohe Flexibilität
- Nutzt Broadcasting-Fähigkeit der lokalen Netze aus
- Falls kein Eintrag im lokalen ARP-Cache vorhanden ist
 - Broadcast eines ARP-Request (enthält Ziel-IP-Adresse)
 - Jedes Endsystem liest ARP-Request und überprüft IP-Adresse
 - Falls eigene IP-Adresse, dann ARP-Reply
 - Suchende Instanz trägt Information in ihren ARP-Cache ein
 - Optional: Andere Endsysteme merken sich ebenfalls Adresszuordnung der suchenden Instanz aus der Anfrage

Internet Control Message Protocol (ICMP)

- Einzelne Verluste von Dateneinheiten werden im Normalfall von IP nicht gemeldet (unzuverlässiger Datagrammdienst)
- Schwerwiegende Probleme (z.B. Unterbrechung einer Leitung) werden zur Vermeidung von Folgefehlern mittels ICMP den Kommunikationspartnern mitgeteilt
- ICMP unterstützt den Austausch von Fehlernachrichten, Statusanfragen und Zustandsinformation



ICMP-Statusanfragen

- Echo und Echoantwort (echo and echo reply)
 - Dient der Überprüfung der Aktivität von Kommunikationssystemen
 - Der Empfänger einer Echo-Anfrage sendet in der Echo-Antwort die erhaltenen Daten an den Kommunikationspartner zurück
- Zeitstempel und Zeitstempelantwort (timestamp and timestamp reply)
 - Dient der Bestimmung von Umlaufzeiten (engl. Round Trip Time, RTT)
 - Die Dateneinheiten umfassen mehrere Felder zur Aufnahme von Zeitstempeln, anhand derer die Bearbeitungszeiten beim Empfänger und die Verzögerung im Netz bestimmt werden können

Format von ICMP-Dateneinheiten

- Übertragung der ICMP-Dateneinheiten
 - ICMP-Dateneinheiten werden im Datenteil von IP-Dateneinheiten übertragen und durch den Wert "1" im Protocol-Feld des IP-Kopfes kenntlich gemacht

IP-Kopf ICMP-[Protocol = 1] Dateneinheit

		_	
Туре	Code	Checksum	Info

- Format der ICMP-Dateneinheit
 - Type: Typ der Dateneinheit (z.B. Type = 3 entspricht "Zieladresse nicht erreichbar")
 - Code: Genaue Beschreibung der Dateneinheit (z.B. "Netzwerk nicht erreichbar")
 - Checksum: Prüfsumme über die gesamte ICMP-Dateneinheit
 - Der Inhalt des Info-Teils ist abhängig vom Typ der ICMP-Dateneinheit
 - z.B. Felder für Zeitstempel bei Dateneinheit "Zeitstempel und Zeitstempelantwort"

IP Version 6

- Probleme mit der bisherigen Version von IP führten zur Weiterentwicklung zu IPv6 (IP Version 6)
 - Unterstützung von Milliarden von Endsystemen (128 bit Adressen)
 - Reduzierung des Umfangs der Routing-Tabellen
 - Vereinfachung des Protokolls zur Effizienzsteigerung
 - Höhere Sicherheit
 - Unterschiedliche Dienstarten, z.B. Echtzeitunterstützung
 - Bessere Multicast-Unterstützung
 - Integrierte Unterstützung mobiler Teilnehmer
 - Koexistenz der alten und neuen Version

Übungen (1)

- 7.1 Nennen Sie verschiedene Vermittlungstechniken und diskutieren Sie deren Eigenschaften, sowie deren Vor- und Nachteile.
- 7.2 Erläutern Sie den Unterschied von virtuellen Verbindungen zum Versand von Datagrammen.
- 7.3 Welche Techniken werden zur Netzkopplung auf den Schichten 1, 2 und 3 eingesetzt und wie funktionieren diese?
- 7.4 Was sind die Vor- und Nachteile von Brücken gegenüber Repeatern?
- 7.5 In welche Kategorien lassen sich Routing-Verfahren unterteilen?
- 7.6 Was ist die Aufgabe eines Routing-Protokolls und wo wird es im Schichtenmodell angesiedelt?
- 7.7 Wie funktionieren Distanz-Vektor-Routing-Protokolle?
- 7.8 Worin unterscheidet sich die Verbreitungsgeschwindigkeit von "guten" bzw. "schlechten" Änderungen der Linkkosten in Link-State-Protokollen?

Übungen (2)

- 7.9 Was versteht man unter dem Count-to-Infinity-Problem und durch welche Technik wird ihm begegnet?
- 7.10 Wie funktionieren Link-State-Routing-Protokolle?
- 7.11 Welche Aufgaben hat das Protokoll IP und durch welche Eigenschaften zeichnet es sich besonders aus?
- 7.12 Geben Sie für die IP-Adresse 129.13.6.34 und die Subnetzmaske 255.255.128.0 an, welche IP-Adressen lokal erreichbar sind.
- 7.13 Welches Protokoll kommt zum Einsatz, falls eine Zieladresse im eigenen lokalen Netz erreichbar ist, um die Dateneinheit auf Schicht 2 korrekt zustellen zu können und wie funktioniert dieses Protokoll?
- 7.14 Beschreiben Sie detailliert, wie eine Dateneinheit auf dem Weg zu seiner Zieladresse seinen Weg durch das Internet findet und woher die jeweils benötigten Informationen stammen.
- 7.15 Wozu dient das Protokoll ICMP und in welchem "Verhältnis" steht es zu IP?

Literatur

- [Hals05] F. Halsall; Computer Networking and the Internet, 5/e; 2005
- [ITWi14] http://www.itwissen.info/definition/lexikon/Vermittlungsstelle-switching-center-Vst.html
- [KuRo12] James Kurose, Keith Ross, Computer Networking, 6/e, Pearson; 2012
- [PeDa11] L. Peterson, B. Davie; Computer Networks: A Systems Approach, 5/e; Morgan Kaufmann; 2011
- [RFC950] J. Mogul, J. Postel; Internet Standard Subnetting Procedure (RFC 950); IETF, August 1985
- [RFC2131] R. Droms; Dynamic Host Configuration Protocol (RFC 2131); IETF, März 1997
- [Sext97] M. Sexton, A. Reid, Broadband Networking ATM, SDH and SONET, Artech-House, 1997
- [Stal10] W. Stallings; Data & Computer Communications, 9/e, Prentice Hall; 2010
- [Wart03] F. Warthman; Delay-Tolerant Networks (DTNs): A Tutorial; März 2003
 - Online: http://www.ipnsig.org/reports/DTN_Tutorial11.pdf
- [Zhan06] Z. Zhang; Routing in Intermittently Connected Mobile Ad Hoc Networks and Delay Tolerant Networks: Overview and Challenges; IEEE Communications Service; 1st Quarter 2006

