

Grundbegriffe der Informatik Kapitel 16: Erste Algorithmen in Graphen

Mattias Ulbrich (basierend auf Folien von Thomas Worsch)

KIT · Institut für Theoretische Informatik

Wintersemester 2023/2024

Überblick

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel Matrizenmultiplikation und Matrizenaddition

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix Erste Möglichkeit für die Berechnung der Wegematrix Zählen arithmetischer Operationen Schnellere Berechnungen der Wegematrix

Wo sind wir?

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

Einfache Berechnung der Erreichbarkeitsrelation

Objekte im Rechner – Knoten, Kanten und Graphen


```
class Vertex {
                           «Knoteninhalte» für uns irrelevant
  String name;
class Edge {
  Vertex start;
  Vertex end;
class Graph {
                           mehr als eine Menge
  Vertex[] vertices;
  Edge[] edges;
                           mehr als eine Menge
```

Objekte im Rechner — Knoten, Kanten und Graphen


```
class Vertex {
  int id;
                             o. B. d. A.: Wertebereich \mathbb{Z}_{|V|}
class Edge {
  Vertex start;
  Vertex end;
class Graph {
                             mehr als eine Menge
  Vertex[] vertices;
  Edge[] edges;
                             mehr als eine Menge
```

Objekte im Rechner - Knoten, Kanten und Graphen


```
class Vertex {
  int id;
                             o. B. d. A.: Wertebereich \mathbb{Z}_{|V|}
class Edge {
  Vertex start;
  Vertex end;
class Graph {
                             mehr als eine Menge
  Vertex[] vertices;
  Edge[] edges;
                             mehr als eine Menge
```

Objekte im Rechner — Knoten, Kanten und Graphen


```
class Vertex {
  int id;
                             o. B. d. A.: Wertebereich \mathbb{Z}_{|V|}
class Edge {
  Vertex start;
  Vertex end;
class Graph {
                             mehr als eine Menge
  Vertex[] vertices;
  Edge[] edges;
                             mehr als eine Menge
```

Inzidenzlisten


```
class Vertex {
  int id;
  Edge[] incoming;
                           Feldlänge = Eingangsknotengrad
  Edge[] outgoing;
                           Feldlänge = Ausgangsknotengrad
}
class Edge {
  Vertex start;
  Vertex end;
class Graph {
  Vertex[] vertices;
  Edge[] edges;
```

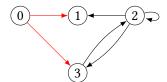
Adjazenzlisten — eine andere Repräsentation für Graphen


```
class Vertex {
  int id;
 Vertex[] neighbors;
                         Feldlänge = Knotengrad
class Edge {
  Vertex start;
  Vertex end;
class Graph {
  Vertex[] vertices;
 Edge[] edges;
```

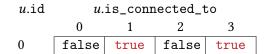
Variante von Adjazenzlisten (auf dem Weg zu Matrizen)


```
class Vertex {
   int id;
   boolean[] is_connected_to;
                                                                Feldlänge = |V|
                                                                u.is\_connected\_to[v.id]
                                                                   \begin{cases} \text{true} & \text{falls } (u, v) \in E \\ \text{false} & \text{falls } (u, v) \notin E \end{cases}
class Graph {
   Vertex[] vertices;
```

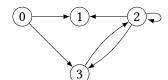
Variante von Adjazenzlisten für einen Beispielgraph



Objekt *u* für Knoten 0

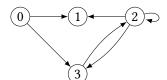


Variante von Adjazenzlisten für einen Beispielgraph



$u.\mathtt{id}$	u.is_connected_to				
	0	1	2	3	
0	false	true	false	true	
1	false	false	false	false	
2	false	true	true	true	
3	false	false	true	false	

Variante von Adjazenzlisten für einen Beispielgraph



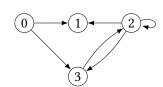
$u.\mathtt{id}$	u.is_connected_to				
	0	1	2	3	
0	false	true	false	true	
1	false	false	false	false	
2	false	true	true	true	
3	false	false	true	false	

Adjazenzmatrix eines gerichteten Graphen

• G = (V, E) gerichtet mit n Knoten $n \times n$ -Matrix A mit

$$A_{ij} = \begin{cases} 1 & \text{falls } (i, j) \in E \\ 0 & \text{falls } (i, j) \notin E \end{cases}$$

- ungerichtetes $U = (V, E) \rightsquigarrow G = (V, E_q)$
- Beispiel



Repräsentation von Relationen durch Matrizen

- endliche Menge *M* mit *n* Elementen
- binäre Relation $R \subseteq M \times M$
- repräsentiert durch $n \times n$ -Matrix A(R):

$$(A(R))_{ij} = \begin{cases} 1 & \text{falls } (i,j) \in R & \text{d. h. also } iRj \\ 0 & \text{falls } (i,j) \notin R & \text{d. h. also } \neg (iRj) \end{cases}$$

verschiedene Relationen ↔ verschiedene Matrizen

Wegematrix eines Graphen

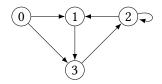
Erreichbarkeitsrelation E* als Matrix W

$$W_{ij} = \begin{cases} 1 & \text{falls } (i,j) \in E^* \\ 0 & \text{falls } (i,j) \notin E^* \end{cases}$$

$$= \begin{cases} 1 & \text{falls es in } G \text{ einen Pfad von } i \text{ nach } j \text{ gibt} \\ 0 & \text{falls es in } G \text{ keinen Pfad von } i \text{ nach } j \text{ gibt} \end{cases}$$

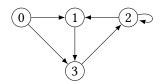
- algorithmisches Problem:
 - gegebene Probleminstanz: Adjazenzmatrix eines Graphen
 - gesucht: zugehörige Wegematrix des Graphen

$$W_{ij} = \begin{cases} 1 & \text{falls } (i,j) \in E^* \\ 0 & \text{falls } (i,j) \notin E^* \end{cases}$$



$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

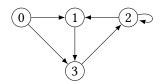
$$W_{ij} = \begin{cases} 1 & \text{falls } (i,j) \in E^* \\ 0 & \text{falls } (i,j) \notin E^* \end{cases}$$



$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$$

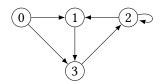
$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \bullet W = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$W_{ij} = \begin{cases} 1 & \text{falls } (i,j) \in E^* \\ 0 & \text{falls } (i,j) \notin E^* \end{cases}$$



$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$$

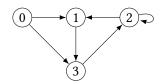
$$W_{ij} = \begin{cases} 1 & \text{falls } (i,j) \in E^* \\ 0 & \text{falls } (i,j) \notin E^* \end{cases}$$



$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 1 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \qquad \bullet W = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \\ 2 & & & 1 \\ & & & & 1 \end{bmatrix}$$

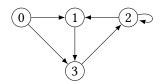
$$W_{ij} = \begin{cases} 1 & \text{falls } (i,j) \in E^* \\ 0 & \text{falls } (i,j) \notin E^* \end{cases}$$



$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \qquad \bullet W = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & & & \\ 0 & & & 1 & \\ & & & & & \end{bmatrix}$$

$$W_{ij} = \begin{cases} 1 & \text{falls } (i,j) \in E^* \\ 0 & \text{falls } (i,j) \notin E^* \end{cases}$$



$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \bullet W = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Was ist wichtig

- Das sollten Sie mitnehmen:
 - Repräsentation von Relationen als Matrizen
 - z. B. Kantenrelation eines Graphen: Adjazenzmatrix
- Das sollten Sie üben:
 - zu gegebenem Graphen die Adjazenzmatrix hinschreiben
 - zu gegebener Adjazenzmatrix den Graphen hinmalen
 - z.B. für irgendwelche "speziellen" Graphen und Matrizen

Wo sind wir?

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

Einfache Berechnung der Erreichbarkeitsrelation

Wo sind wir?

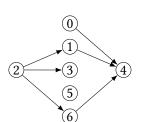
Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen 2-Erreichbarkeit an einem Beispiel

Matrizenmultiplikation und Matrizenaddition

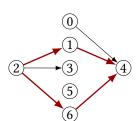
Einfache Berechnung der Erreichbarkeitsrelation

2-Erreichbarkeit an einem Beispiel



gesucht: Pfade der Länge 2 von Knoten 2 zu Knoten 4

2-Erreichbarkeit an einem Beispiel



- gesucht: Pfade der Länge 2 von Knoten 2 zu Knoten 4
- hinsehen: (2, 1, 4) und (2, 6, 4)

- alle Pfade?
- prüfe für *alle* Knoten $k \in V$:
 - Ist (2, *k*, 4) ein Pfad?

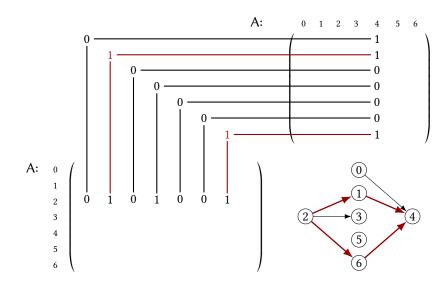
- alle Pfade?
- prüfe für *alle* Knoten $k \in V$:
 - Ist (2, *k*, 4) ein Pfad?
 - Ist $(2, k) \in E$ und $(k, 4) \in E$?

- alle Pfade?
- prüfe für *alle* Knoten $k \in V$:
 - Ist (2, *k*, 4) ein Pfad?
 - Ist $(2, k) \in E$ und $(k, 4) \in E$?
 - Ist $A_{2k} = 1$ und $A_{k4} = 1$?

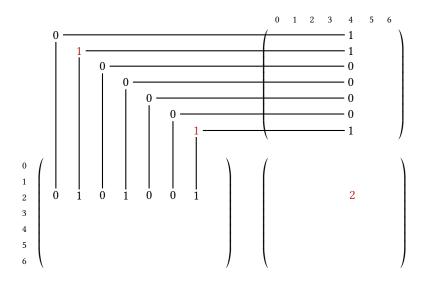
- alle Pfade?
- prüfe für *alle* Knoten $k \in V$:
 - Ist (2, *k*, 4) ein Pfad?
 - lst $(2, k) \in E$ und $(k, 4) \in E$?
 - Ist $A_{2k} = 1$ und $A_{k4} = 1$?
 - Ist $A_{2k} \cdot A_{k4} = 1$?

- alle Pfade?
- prüfe für *alle* Knoten $k \in V$:
 - Ist (2, *k*, 4) ein Pfad?
 - Ist $(2, k) \in E$ und $(k, 4) \in E$?
 - Ist $A_{2k} = 1$ und $A_{k4} = 1$?
 - Ist $A_{2k} \cdot A_{k4} = 1$?
- durchlaufe sequenziell f
 ür alle k
 - gleichzeitig alle A_{2k} und alle A_{k4} , d. h.
 - Zeile für Knoten 2 und Spalte für Knoten 4

Systematische Suche nach Pfaden



Zählen der Pfade im Beispiel



Zählen der Pfade im Beispiel (2)

Wo sind wir?

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

2-Erreichbarkeit an einem Beispiel

Matrizenmultiplikation und Matrizenaddition

Einfache Berechnung der Erreichbarkeitsrelation

Matrizenmultiplikation

- es sei
 - A eine $\ell \times n$ -Matrix
 - B eine $n \times m$ -Matrix
- Produkt $C = A \cdot B$ die $\ell \times m$ -Matrix mit

$$C_{ij} = \sum_{k=0}^{n-1} A_{ik} \cdot B_{kj}$$

- im Allgemeinen $A \cdot B \neq B \cdot A$
 - falls überhaupt beides definiert, also $\ell = m$

Algorithmus für Matrizenmultiplikation

zunächst die naheliegende Möglichkeit bald: es geht auch anders!

```
\ell Zeilen m Spalten
```

$$C_{ij} = \sum_{k=0}^{n-1} A_{ik} \cdot B_{kj}$$

```
for i \leftarrow 0 to \ell - 1 do

for j \leftarrow 0 to m - 1 do

C_{ij} \leftarrow 0

for k \leftarrow 0 to n - 1 do

C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj}

od

od
```

Einheitsmatrizen

Einheitsmatrix I quadratische Matrix mit

$$I_{ij} = \begin{cases} 1 & \text{falls } i = j \\ 0 & \text{falls } i \neq j \end{cases}$$

• für jede $m \times n$ -Matrix A gilt

$$I \cdot A = A = A \cdot I$$

- linke Einheitsmatrix $m \times m$
- rechte Einheitsmatrix $n \times n$

Potenzen quadratischer Matrizen

$$A^{0} = I$$

$$\forall n \in \mathbb{N}_{0} : A^{n+1} = A^{n} \cdot A$$

Quadrierte Adjazenzmatrix

• A^2 einer Adjazenzmatrix A

$$(A^2)_{ij} = \sum_{k=0}^{n-1} A_{ik} A_{kj}$$

- $A_{ik}A_{kj} = 1$
 - $\leftrightarrow A_{ik} = A_{kj} = 1$
 - \leftrightarrow Kanten von i nach k und von k nach j existieren
 - \leftrightarrow (i, k, j) ein Pfad der Länge 2 von i nach j ist. und 0 sonst.
- für $k_1 \neq k_2$ sind (i, k_1, j) und (i, k_2, j) verschieden
- $(A^2)_{ij}$ ist Anzahl der Pfade der Länge 2 von i nach j

Quadrierte Adjazenzmatrix

A² einer Adjazenzmatrix A

$$(A^2)_{ij} = \sum_{k=0}^{n-1} A_{ik} A_{kj}$$

- $A_{ik}A_{kj} = 1$
 - $\leftrightarrow A_{ik} = A_{kj} = 1$
 - \leftrightarrow Kanten von *i* nach *k* und von *k* nach *j* existieren
 - \leftrightarrow (i, k, j) ein Pfad der Länge 2 von i nach j ist. und 0 sonst.
- für $k_1 \neq k_2$ sind (i, k_1, j) und (i, k_2, j) verschieden
- $(A^2)_{ij}$ ist Anzahl der Pfade der Länge 2 von i nach j

Matrizenaddition

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 10 & 20 \\ 30 & 40 \end{pmatrix}$$
$$= \begin{pmatrix} 11 & 22 \\ 33 & 44 \end{pmatrix}$$

- A und B zwei $m \times n$ -Matrizen
- Summe C = A + B ist $m \times n$ -Matrix mit

$$C_{ij} = A_{ij} + B_{ij}$$

- stets A + B = B + A
- neutrales Element: Nullmatrix 0, überall Nullen
- algorithmisch: for $i \leftarrow 0$ to m-1 do for $j \leftarrow 0$ to n-1 do $C_{ij} \leftarrow A_{ij} + B_{ij}$ od od

Wo sind wir?

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

Einfache Berechnung der Erreichbarkeitsrelation

Benutze

$$E^* = \bigcup_{i \in \mathbb{N}_0} E$$

Benutze

$$E^* = \bigcup_{i \in \mathbb{N}_0} E^i$$

- Probleme:
 - Was kann man gegen das unendlich tun?

Benutze

$$E^* = \bigcup_{i \in \mathbb{N}_0} E^i$$

- Probleme:
 - Was kann man gegen das unendlich tun?
 - Woher kommen die Matrizen für die Relationen *E*^{*i*}?

Benutze

$$E^* = \bigcup_{i \in \mathbb{N}_0} E^i$$

- Probleme:
 - Was kann man gegen das unendlich tun?
 - Woher kommen die Matrizen für die Relationen *E*^{*i*}?
 - Welcher Matrizen-Operation entspricht die Vereinigung?

Beseitigung der unendlichen Vereinigung

- Existiert Pfad in G von Knoten i nach Knoten j?
- Sei
 - G = (V, E) mit |V| = n
 - nur endlich viele Knoten
 - $p = (i_0, i_1, \dots, i_k)$ ein Pfad mit $i_0 = i$ und $i_k = j$.

Beseitigung der unendlichen Vereinigung

- Existiert Pfad in G von Knoten i nach Knoten j?
- Sei
 - G = (V, E) mit |V| = n
 - nur endlich viele Knoten
 - $p = (i_0, i_1, ..., i_k)$ ein Pfad mit $i_0 = i$ und $i_k = j$.
- wenn $k \ge n$, dann
 - enthält p Zyklus von x nach x
 - Weglassen ergibt kürzeren Pfad von i nach j

Beseitigung der unendlichen Vereinigung

- Existiert Pfad in G von Knoten i nach Knoten j?
- Sei
 - G = (V, E) mit |V| = n
 - nur endlich viele Knoten
 - $p = (i_0, i_1, \dots, i_k)$ ein Pfad mit $i_0 = i$ und $i_k = j$.
- wenn $k \ge n$, dann
 - enthält p Zyklus von x nach x
 - Weglassen ergibt kürzeren Pfad von i nach j
- wiederhole, solange Pfadlänge $\geq n$
- Ergebnis: Pfad mit Länge $\leq n 1$ von i nach j

Beseitigung der *unendlichen* Vereinigung (2)

eben begründet:

Lemma

Für jeden gerichteten Graphen G = (V, E) mit n Knoten gilt:

$$E^* = \bigcup_{i \in \mathbb{Z}_n} E^i$$

Beseitigung der *unendlichen* Vereinigung (2)

eben begründet:

Lemma

Für jeden gerichteten Graphen G = (V, E) mit n Knoten gilt:

$$E^* = \bigcup_{i \in \mathbb{Z}_n} E^i$$

längere Pfade schaden nicht:

Lemma

Für jeden gerichteten Graphen G = (V, E) mit n Knoten gilt:

$$\forall k \ge n : E^* = \bigcup_{i \in \mathbb{Z}_k} E^i$$

Wo sind wir?

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix

Erste Möglichkeit für die Berechnung der Wegematrix Zählen arithmetischer Operationen Schnellere Berechnungen der Wegematrix

Potenzen der Adjazenzmatrix haben eine Bedeutung

Lemma

Es sei G ein gerichteter Graph mit Adjazenzmatrix A. Für alle $k \in \mathbb{N}_0$ gilt:

 $(A^k)_{ij}$ ist die Anzahl der Pfade der Länge k in G von i nach j.

Beweis:

- vollständige Induktion
- Induktionsschritt fast wie im Fall k = 2

Signum-Funktion

$$sgn: \mathbb{R} \to \mathbb{R} : sgn(x) = \begin{cases} 1 & \text{falls } x > 0 \\ 0 & \text{falls } x = 0 \\ -1 & \text{falls } x < 0 \end{cases}$$

- bei Matrizen komponentenweise
- $\operatorname{sgn}: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ mit $(\operatorname{sgn}(M))_{ij} = \operatorname{sgn}(M_{ij})$

Matrizendarstellung für $E^k - \operatorname{sgn}(A^k)$ tut es

Korollar

Es sei G ein gerichteter Graph mit Adjazenzmatrix A. Für alle $k \in \mathbb{N}_0$ gilt:

1

$$\operatorname{sgn}((A^k)_{ij}) = \begin{cases} 1 & \text{falls in } G \text{ ein Pfad der Länge } k \\ & \text{von } i \text{ nach } j \text{ existiert} \\ 0 & \text{falls in } G \text{ kein Pfad der Länge } k \\ & \text{von } i \text{ nach } j \text{ existiert} \end{cases}$$

2. Matrix $sgn(A^k)$ repräsentiert die Relation E^k .

Wo sind wir?

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix

Erste Möglichkeit für die Berechnung der Wegematrix

Zählen arithmetischer Operationen Schnellere Berechnungen der Wege

Schnellere Berechnungen der Wegematrix

Vereinigung von Relationen

- Relationen $R \subseteq M \times M$ und $R' \subseteq M \times M$ repräsentiert durch Matrizen A und A'.
- dann:

$$(i, j) \in R \cup R' \leftrightarrow (i, j) \in R \lor (i, j) \in R'$$

 $\leftrightarrow A_{ij} = 1 \lor A'_{ij} = 1$
 $\leftrightarrow A_{ij} + A'_{ij} \ge 1$
 $\leftrightarrow (A + A')_{ij} \ge 1$
 $\leftrightarrow \operatorname{sgn}(A + A')_{ij} = 1$

■ $R \cup R'$ wird durch sgn(A + A') repräsentiert

Eine erste Formel für die Wegematrix — es gibt auch noch andere ...

Lemma

Es sei G ein gerichteter Graph mit Adjazenzmatrix A. Dann gilt für alle $k \ge n-1$:

- Die Matrix $\operatorname{sgn}(\sum_{i=0}^k A^i)$ repräsentiert die Relation E^* .
- Mit anderen Worten:

$$W = \operatorname{sgn}\left(\sum_{i=0}^{k} A^{i}\right)$$

ist die Wegematrix des Graphen *G*.

Beweis

- noch zu überlegen
- $\bigcup_{i=0}^{n-1} E^i$ durch $\operatorname{sgn}(\sum_{i=0}^k \operatorname{sgn}(A^i))$ repräsentiert
 - leichte Verallgemeinerung des Falles $R \cup R'$
- "innere" Anwendungen von sgn dürfen fehlen
 - Wenn alle Matrixeinträge ≥ 0 sind, gilt:

$$\operatorname{sgn}(\operatorname{sgn}(M) + \operatorname{sgn}(M'))_{ij} = \operatorname{sgn}(M + M')_{ij}$$

Einfachster Algorithmus für die Wegematrix


```
⟨Matrix A sei die Adjazenzmatrix⟩
W \leftarrow 0
for i \leftarrow 0 to n-1 do
   M \leftarrow 1
   for j \leftarrow 1 to i do
      M \leftarrow M \cdot A
   od
   W \leftarrow W + M
od
W \leftarrow \operatorname{sgn}(W)
```

Einfachster Algorithmus für die Wegematrix


```
⟨Matrix A sei die Adjazenzmatrix⟩
W \leftarrow 0
for i \leftarrow 0 to n-1 do
   M \leftarrow 1
   for j \leftarrow 1 to i do
      M \leftarrow M \cdot A
   od
   \{M = A^i\}
   W \leftarrow W + M
    \{ W = \sum_{k=0}^{i} A^{k} \}
od
W \leftarrow \operatorname{sgn}(W)
{ W ist die Wegematrix }
```

Wo sind wir?

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix

Erste Möglichkeit für die Berechnung der Wegematrix

Zählen arithmetischer Operationen

Schnellere Berechnungen der Wegematrix

Was ist der «Aufwand» eines Algorithmus?

- Anzahl Codezeilen?
- Entwicklungszeit?
- Anzahl Schritte?
 - nicht immer gleich
- benötigter Speicherplatz?
 - nicht immer gleich
- vorläufig: Anzahl arithmetischer Operationen
 - später anders

Wie viele elementare Operationen für Matrizenaddition?

for
$$i \leftarrow 0$$
 to $m-1$ do
for $j \leftarrow 0$ to $n-1$ do
 $C_{ij} \leftarrow A_{ij} + B_{ij}$
od
od

 $m \cdot n$ Additionen

für $n \times n$ -Matrizen: n^2

Wie viele elementare Operationen für Multiplikation?


```
\begin{array}{l} \textbf{for} \ i \leftarrow 0 \ \textbf{to} \ \ell-1 \ \textbf{do} \\ \textbf{for} \ j \leftarrow 0 \ \textbf{to} \ m-1 \ \textbf{do} \\ C_{ij} \leftarrow 0 \\ \textbf{for} \ k \leftarrow 0 \ \textbf{to} \ n-1 \ \textbf{do} \\ C_{ij} \leftarrow C_{ij} + A_{ik} \cdot B_{kj} \\ \textbf{od} \\ \textbf{od} \\ \textbf{od} \\ \textbf{od} \end{array}
```

- $\ell \cdot m \cdot n$ Additionen und $\ell \cdot m \cdot n$ Multiplikationen
- für $n \times n$ -Matrizen: $2n^3$ kleine Variante: $2n^3 n^2$
- Achtung: es geht auch mit weniger Operationen!

$$W \leftarrow 0$$

for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow 1$
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + n^2$$
$$= n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

$$\bullet \text{ denn } \sum_{i=0}^{n-1} i = \frac{(n-1)n}{2}$$

$$W \leftarrow 0$$

for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow 1$
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + n^2$$
$$= n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

$$\bullet \text{ denn } \sum_{i=0}^{n-1} i = \frac{(n-1)n}{2}$$

$$W \leftarrow 0$$

for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow 1$
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + n^2$$
$$= n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

$$\bullet \text{ denn } \sum_{i=0}^{n-1} i = \frac{(n-1)n}{2}$$

$$W \leftarrow 0$$

for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow 1$
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + \frac{n}{n} \cdot n^2 + n^2$$
$$= n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

$$\bullet \text{ denn } \sum_{i=0}^{n-1} i = \frac{(n-1)n}{2}$$

$$W \leftarrow 0$$

for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow 1$
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + n^2$$
$$= n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

$$\bullet \text{ denn } \sum_{i=0}^{n-1} i = \frac{(n-1)n}{2}$$

Wie viele elementare Operationen für Wegematrix?

$$W \leftarrow 0$$

for $i \leftarrow 0$ to $n-1$ do
 $M \leftarrow 1$
for $j \leftarrow 1$ to i do
 $M \leftarrow M \cdot A$
od
 $W \leftarrow W + M$
od
 $W \leftarrow \operatorname{sgn}(W)$

Aufwand:

$$\left(\sum_{i=0}^{n-1} i\right) \cdot (2n^3 - n^2) + n \cdot n^2 + \frac{n^2}{2}$$
$$= n^5 - \frac{3}{2}n^4 + \frac{3}{2}n^3 + n^2$$

$$\bullet \text{ denn } \sum_{i=0}^{n-1} i = \frac{(n-1)n}{2}$$

Wo sind wir?

Repräsentation von Graphen im Rechner

Berechnung der 2-Erreichbarkeitsrelation und Rechnen mit Matrizen

Einfache Berechnung der Erreichbarkeitsrelation

Potenzen der Adjazenzmatrix Erste Möglichkeit für die Berechnung der Wegematrix Zählen arithmetischer Operationen

Schnellere Berechnungen der Wegematrix

Wiederverwendung -

auch bei Zwischenergebnissen eine gute Sache

$$\begin{aligned} W &\leftarrow 0 \\ M &\leftarrow \mathsf{I} \\ \textbf{for } i \leftarrow 0 \ \textbf{to} \ n-1 \ \textbf{do} \\ W &\leftarrow W + M \\ M &\leftarrow M \cdot A \\ \textbf{od} \\ W &\leftarrow \mathsf{sgn}(W) \end{aligned}$$

- für Berechnung A^i kann man A^{i-1} wiederverwenden
- Aufwand:

$$n \cdot (n^2 + (2n^3 - n^2)) + n^2 = 2n^4 + n^2$$

Schon vergessen?

$$\forall k \ge n - 1 : E^* = \bigcup_{i=0}^k E^i$$

• Wie kann ein k > n - 1 helfen?

$$\forall k \ge n - 1 : E^* = \bigcup_{i=0}^k E^i$$

- Wie kann ein k > n 1 helfen?
 - statt n-1 wähle kleinste Zweierpotenz $k=2^m \ge n$
 - also $m = \lceil \log_2 n \rceil$

$$\forall k \ge n - 1 : E^* = \bigcup_{i=0}^k E^i$$

- Wie kann ein k > n 1 helfen?
 - statt n-1 wähle kleinste Zweierpotenz $k=2^m \ge n$
 - also $m = \lceil \log_2 n \rceil$
 - finde Matrix F mit $W = F^{2^m} = (\cdots ((F^2)^2) \cdots)^2$
 - nur noch $m = \lceil \log_2 n \rceil$ Matrizenmultiplikationen

$$\forall k \ge n - 1 : E^* = \bigcup_{i=0}^k E^i$$

- Wie kann ein k > n 1 helfen?
 - statt n-1 wähle kleinste Zweierpotenz $k=2^m \ge n$
 - also $m = \lceil \log_2 n \rceil$
 - finde Matrix F mit $W = F^{2^m} = (\cdots ((F^2)^2) \cdots)^2$
 - nur noch $m = \lceil \log_2 n \rceil$ Matrizenmultiplikationen
- Preisfrage: Wie sieht *F* aus?

$$\forall k \ge n - 1 : E^* = \bigcup_{i=0}^k E^i$$

- Wie kann ein k > n 1 helfen?
 - statt n-1 wähle kleinste Zweierpotenz $k=2^m \ge n$
 - also $m = \lceil \log_2 n \rceil$
 - finde Matrix F mit $W = F^{2^m} = (\cdots ((F^2)^2) \cdots)^2$
 - nur noch $m = \lceil \log_2 n \rceil$ Matrizenmultiplikationen
- Preisfrage: Wie sieht F aus?
- Wähle Matrix F für Relation $R_F = E^0 \cup E^1 = I_V \cup E$.

Es geht noch besser (2)

$$R_F = E^0 \cup E^1$$

$$R_F^2 = (E^0 \cup E^1) \circ (E^0 \cup E^1) = E^0 \cup E^1 \cup E^1 \cup E^2$$
$$= E^0 \cup E^1 \cup E^2$$

■
$$R_F^4 = (R_F^2)^2 = (E^0 \cup E^1 \cup E^2) \circ (E^0 \cup E^1 \cup E^2)$$

= ...
= $E^0 \cup E^1 \cup E^2 \cup E^3 \cup E^4$

■ Induktion: Für alle $m \in \mathbb{N}_0$ gilt:

$$R_F^{2^m} = \bigcup_{i=0}^{2^m} E^i$$

Es geht noch besser (3)

$$F \leftarrow \mathsf{I} + A$$

$$m \leftarrow \lceil \log_2 n \rceil$$
for $i \leftarrow 1$ **to** m **do**

$$F \leftarrow F \cdot F$$
od

$$W \leftarrow \mathsf{sgn}(F)$$

- Berechnung von $\lceil \log_2 n \rceil$ aus n benötigt höchstens $\lceil \log_2 n \rceil$ Operationen
- Aufwand:

$$n^{2} + \lceil \log_{2} n \rceil + \lceil \log_{2} n \rceil \cdot (2n^{3} - n^{2}) + n^{2}$$
$$= \lceil \log_{2} n \rceil \cdot 2n^{3} + \cdots$$

- «besser» als $2n^4$
- nächstes Kapitel: präzise ungenau sein

Was ist wichtig

- Das sollten Sie mitnehmen:
 - die naheliegende Idee nicht immer die beste
 - Denken, Mathematik, Kreativität, Einfach-mal-drüber-schlafen, ...
- Das sollten Sie üben:
 - Aufwandsabschätzungen bei (ineinander geschachtelten) Schleifen
 - auch mal verrückte Ideen ausprobieren

Zusammenfassung

- Repräsentationen von Graphen im Rechner
- Berechnung der Wegematrix
 - mit vielen oder weniger Operationen
 - Algorithmus von Warshall kommt mit weniger Operationen aus als unsere vorherigen Versuche