Musterlösung zum Übungsblatt 13 der Vorlesung "Grundbegriffe der Informatik"

Aufgabe 13.1

a) Sei $d: \mathcal{T} \to \{[,], 0, 1\}^*$ die im Skript in Abschnitt 16.5.1 dargestellte Codierung (also injektiv) von Turingmaschinen.

Sei weiterhin $n:\{[,],0,1\}^* \to \{0,1,2,3\}^*$ der (injektive) Homomorphismus, der durch n(0)=0, n(1)=1, n([)=2, n([)=3 gegeben ist.

Wir definieren nun $c: \mathcal{T} \to \mathbb{N}_0$ durch $\forall T \in \mathcal{T}: c(T) = Num_4(n(d(T))).$

Da Num_4 , n und d injektive Funktionen sind, ist auch c injektiv.

(Hinweis: Es wurde leider ein wenig gemogelt, da Turingmaschinen mit verschiedenen Bezeichnungen der Zustände oder Symbole durch d auf das gleiche Wort abgebildet werden, während eine Umsortierung der Zustände einer Turingmaschine in der Regel zu einem anderen Wort bei der Codierung durch d führt, obwohl die "gleiche" Turingmaschine codiert wird.)

- b) Angenommen, es gibt ein $n \in \mathbb{N}_0$, so dass $\bar{d} = h(n)$ gilt. Dann würde gelten $\bar{d}(n) = (h(n))(n)$, was im Widerspruch zur Definition $\bar{d}(n) = 1 (h(n))(n)$ steht.
- c) Wir definieren $null : \mathbb{N}_0 \to \{0, 1\}, n \mapsto 0.$

Sei $d: \mathbb{N}_0 \to \{0,1\}$ gegeben durch $\forall T \in \mathcal{T}: d(c(T)) = b(T)$ und b(n) = 0 sonst. Die Funktion ist wohldefiniert, da c injektiv ist.

Nach Aufgabenteil b) gibt es eine Funktion $\bar{d} \in \mathcal{F}$, für die es kein $n \in \mathbb{N}$ gibt, so dass $\bar{d} = d(n)$ gilt.

Daraus folgt, dass es kein $T \in \mathcal{T}$ gibt, für das $b(T) = d(c(T)) = \bar{d}$ gilt. Damit ist die Behauptung bewiesen.

Aufgabe 13.2

a) Reflexivität: Für jedes $x \in \mathbb{N}_0$ gilt |x - x| = 0. Da 0 keine Primzahl ist, ist R nicht reflexiv.

Symmetrie: Da für alle $x, y \in \mathbb{N}_0$ gilt |x - y| = |y - x|, is t R symmetrisch.

Transitivität: Wir betrachten die Zahlen 2, 5, 8.

Es gilt: $|2 - 5| = 3 \Rightarrow 2R5$ und $|5 - 8| = 3 \Rightarrow 5R8$.

Es gilt aber $|2-8|=6 \Rightarrow (2,8) \notin R$.

Somit ist R nicht transitiv.

b) Äquivalenzrelation:

Für jedes $x \in \mathbb{N}_0$ gilt x div 10 = x div 10. Somit ist R refelxiv.

Falls für $x, y \in \mathbb{N}_0$ gilt x div 10 = y div, folgt y div 10 = x div. Somit ist R symmetrisch.

Falls für $x, y, z \in \mathbb{N}_0$ gilt x div 10 = y div und y div 10 = z div, so folgt x div 10 = z div.

R ist somit transitiv, und eine Äquivalenzrelation.

Verträglichkeit mit der Addition:

Es gilt 1R8, aber $(1+1,8+8)=(2,16)\notin R$. R ist somit nicht verträglich mit der Addition.

Verträglichkeit mit $f: \mathbb{N}_0 \to \mathbb{N}_0, n \mapsto 2n$:

Es gilt 1R8, aber $(2 \cdot 1, 2 \cdot 8) = (2, 16) \notin R$. R ist somit nicht verträglich mit f.

Verträglichkeit mit $f: \mathbb{N}_0 \to \mathbb{N}_0, n \mapsto n \operatorname{\mathbf{div}} 2$:

Seien $x, y \in \mathbb{N}_0$ mit xRy und sei $k = (x \operatorname{\mathbf{div}} 10) \operatorname{\mathbf{div}} 2 = (y \operatorname{\mathbf{div}} 10) \operatorname{\mathbf{div}} 2$.

Dann gilt: $x, y \in \{20k, 20k + 1, \dots, 20k + 19\}.$

Damit folgt für x' = x div 2 und y' = y div 2: $x', y' \in \{10k, 10k+1, \dots, 10k+9\}$.

Somit ist $(x', y') \in R$, und R ist verträglich mit f.

Aufgabe 13.2

a) Reflexivität: Da für alle $x \in A$ gilt f(x) = f(x), ist R reflexiv.

Symmetrie: Sei $(x,y) \in R \Rightarrow f(x) = f(y) \Rightarrow f(y) = f(x) \Rightarrow (y,x) \in R$. Somit ist R symmetrisch.

Transitivität: Sei $(x, y) \in R$ und $(y, z) \in R \Rightarrow f(x) = f(y)$ und $f(y) = f(z) \Rightarrow f(x) = f(z)$. Somit ist R transitiv.

Zusammen ergibt sich, dass R eine Äquivalenzrelation ist.

b) $f: X^* \to \mathcal{G}, x \mapsto f(x)$

mit
$$\forall w \in X^* : (f(x))(w) = \begin{cases} 1 & \text{falls } xw \in L \\ 0 & \text{falls } xw \notin L \end{cases}$$