Grundbegriffe der Informatik Aufgabenblatt 2

Matr.nr.:						
Nachname:						
Vorname:						
Tutorium:	Nr.			Naı	ne des Tutors:	
Ausgabe:	29. Oktober 2014					
Abgabe:	7. November 2014, 12:30 Uhr					
	im GBI-Briefkasten im Untergeschoss					
	von Gebäude 50.34					
Lösungen werden nur korrigiert, wenn sie						
• rechtzeitig,						
• in Ihrer eigenen Handschrift,						
 mit dieser Seite als Deckblatt und 						
• in der oberen linken Ecke zusammengeheftet						
abgegeben werden.						
Vom Tutor auszufüllen:						
erreichte Punkte						
Blatt 2:			/ 17	+2		
Blätter 1 – 2:			/ 32	+5		

Aufgabe 2.1 (4 Punkte)

Die Sprache L enthalte genau jene Worte aus $\{a, b, c\}^*$, bei denen auf ein b kein a folgt und auf ein b weder ein b.

- a) Geben Sie die Sprache L in der Form $\{w \in \{a, b, c\}^* \mid \dots \}$ an.
- b) Geben Sie drei Sprachen L_1 , L_2 und L_3 so an, dass jede der drei Sprachen unendlich viele Worte enthält und $L = L_1 \cdot L_2 \cdot L_3$ gilt.
- c) Geben Sie zwei Sprachen L_1 und L_2 so an, dass $L = L_1 \cdot L_2$ sowie $L = L_2 \cdot L_1$ gelten.

Aufgabe 2.2 (4 Punkte)

Eine Folge $(x_n)_{n\in\mathbb{N}_0}$ ganzer Zahlen sei definiert durch die Festlegungen

$$x_0 = 1,$$

 $\forall n \in \mathbb{N}_0 \colon x_{n+1} = (-1)^{n+1} 2^n - x_n.$

Beweisen Sie durch vollständige Induktion:

$$\forall n \in \mathbb{N}_0 \colon x_n = (-2)^n$$
.

Aufgabe 2.3 (1+4+1=6 Punkte)

Es sei $A = \{a, b\}$. Eine Abbildung $f: A^* \to A^*$ sei induktiv wie folgt definiert:

$$f(\varepsilon) = \varepsilon,$$

 $\forall v \in A^* \ \forall x \in A \colon f(xv) = f(v)xf(v).$

- a) Geben Sie f(ab) und f(aba) an.
- b) Beweisen Sie durch vollständige Induktion:

$$\forall n \in \mathbb{N}_0 \ \forall w \in A^n \colon |f(w)| = 2^{|w|} - 1.$$

c) Wie viele Kilometer Platz bräuchte man ungefähr, um das Wort f(f(f(f(ab)))) hinzuschreiben, wenn man für jedes Zeichen 1 mm benötigt? Die Angabe von 3 signifikanten Stellen genügt.

Aufgabe 2.4 (3 Punkte)

Es sei A ein Alphabet. Für jedes Wort $w \in A^*$ ist sein *Spiegelbild* das Wort $\widetilde{w} \in A^*$, für welches gilt:

- (i) $|\widetilde{w}| = |w|$;
- (ii) $\forall i \in \{0, 1, \dots, |w| 1\} : \widetilde{w}_i = w_{|w| i 1}.$

Definieren Sie induktiv eine Abbildung $f: A^* \to A^*$ so, dass

$$\forall w \in A^* \colon f(w) = \widetilde{w}.$$

Lassen Sie sich dabei von der induktiven Definition der vorangegangenen Aufgabe inspirieren.

Hinweis: Wie auf den Vorlesungsfolien erwähnt schreiben wir bei einem Wort w für einzelne Symbole statt w(i) gelegentlich kürzer w_i .

*Aufgabe 2.5 (2 Extrapunkte)

Hinweis zum Lesen: Bei dem nachfolgend auftretenden Symbol ω handelt es sich um ein kleines griechisches "omega" (und nicht um ein lateinisches "w").

Es sei A ein Alphabet. Eine Abbildung $\mu\colon \mathbb{N}_0\to A$ heißt ω -Wort über A. Mit A^ω bezeichnen wir die Menge aller ω -Wörter. Eine Teilmenge L von A^ω heißt ω -Sprache. Für jedes ω -Wort μ über A, jeden Index $i\in\mathbb{N}_0$ und jeden Index $j\in\mathbb{N}_0$ mit $j\geq i$, sei $\mu_{i,j}$ das Wort $v\in A^*$ der Länge j-i+1, für welches gilt:

$$\forall k \in \{0, 1, \dots, |v| - 1\} : v_k = \mu(i + k).$$

Für jedes Wort $v \in A^*$ sei v^{ω} jenes ω -Wort μ über A, für das gilt:

$$\forall i \in \mathbb{N}_0 : \mu_{i \cdot |v|, (i+1) \cdot |v|-1} = v.$$

Ein ω -Wort μ über A heißt periodisch, wenn es ein Wort $v \in A^*$ gibt derart, dass $u = v^\omega$.

- a) Geben Sie die ω -Sprache aller periodischen ω -Wörter in der Form $\{v\in A^\omega\mid \dots\}$ an.
- b) Geben Sie ein ω -Wort über $\{a,b\}$ an, das nicht periodisch ist. Ein ω -Wort μ über A heißt schließlich periodisch, wenn es ein Wort $v \in A^*$ und einen Versatz $n \in \mathbb{N}_0$ gibt derart, dass gilt:

$$\forall i \in \mathbb{N}_0 : \mu_{n+i \cdot |v|, n+(i+1) \cdot |v|-1} = v.$$

- c) Geben Sie ein ω -Wort über $\{a,b\}$ an, das schließlich periodisch ist.
- d) Geben Sie ein ω -Wort über $\{a,b\}$ an, das nicht schließlich periodisch ist.

Nur noch Fragezeichen im Kopf? Es wird Zeit, mal was ohne Mathe zu machen?

Plane mit uns das Eulenfest!

Dienstag 04.11.2014 19:15 SR -120, Gebäude 50.34