

2. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2022/23

4. November 2022

Abgabe bis 11. November 2022, 13:00 Uhr

Aufgabe 5:

Eine Folge heißt **Nullfolge**, wenn sie gegen 0 konvergiert. Es sei $(a_n)_{n=1}^{\infty}$ eine reelle Folge. Entscheiden Sie jeweils (durch Beweis oder Gegenbeispiel), welche der folgenden Bedingungen erzwingen, dass (a_n) eine Nullfolge ist:

Zu jedem $\varepsilon > 0$ existiert eine Zahl n_0 , sodass für alle $n \ge n_0$ gilt:

(a) $|a_n| < \varepsilon^2$, (b) $|a_n \cdot a_{n+1}| < \varepsilon$, (c) $|3a_n^2 + 6a_{n+2} + 4a_n^4 + a_n| < \varepsilon$, (d) $|a_n \cdot a_m| < \varepsilon$ für alle $m \in \mathbb{N}$.

Aufgabe 6 (K):

(i) Beweisen Sie: Für alle $n \in \mathbb{N}$ und $k \in \mathbb{N}$ mit $k \leq n$ gilt

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$

(ii) Untersuchen Sie die folgenden reellen Folgen auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert. Beweisen Sie Ihre Aussagen.

(a)
$$\left(\frac{1}{1+\sqrt{|n|}}\right)_{n=-3}^{\infty}$$
,

(b)
$$\left(1 + \frac{(-1)^n}{n}\right)_{n=1}^{\infty}$$
,

(c) $(a_n)_{n=0}^{\infty}$ definiert durch $a_0 := 0$ und $a_n := a_{n-1} + \frac{2}{5}n$ für alle $n \in \mathbb{N}$,

(d) Zu jedem $\varepsilon > 0$ existiert ein $n_0 \in \mathbb{N}$ so, dass für alle $n \ge n_0$ gilt: $(a_n)^2 - 6a_n + 9 < \varepsilon^3$.

Aufgabe 7:

Es seien (a_n) und (b_n) reelle Folgen.

(i) Es sei (a_n) beschränkt und $b_n \to 0$ $(n \to \infty)$. Beweisen Sie, dass dann gilt: $a_n b_n \to 0$ $(n \to \infty)$.

(ii) Es sei (a_n) beschränkt und $b_n \to b$ $(n \to \infty)$ mit $0 \neq b \in \mathbb{R}$. Ist dann die Folge $(a_n b_n)_{n=1}^{\infty}$ konvergent? Falls ja, beweisen Sie diese Aussage, anderenfalls geben Sie ein Gegenbeispiel an.

Aufgabe 8:

(i) Zeigen Sie, dass die Abbildung

$$g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (m,n) \mapsto 2^{m-1}(2n-1)$$

bijektiv ist.

(ii) Es seien A_1,A_2,\cdots abzählbar viele abzählbare Mengen. Zeigen Sie, dass die Vereinigung

$$\bigcup_{n=1}^{\infty} A_n := \{a \colon \exists n \in \mathbb{N} \colon a \in A_n\}$$

ebenfalls abzählbar ist.

Informationen

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung.

https://ilias.studium.kit.edu/goto.php?target=crs_1896358&client_id=produktiv

Übungsschein

Jede (K)-Aufgabe wird mit maximal 10 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-7 und 8-14 **jeweils** mindestens 35 Punkte (50 % der möglichen Punktzahl) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal. Diese ist ab sofort und noch bis zum **19.02.2023** möglich.