

4. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2022/23

18. November 2022

Aufgabe 13:

- (i) Es sei (a_n) eine reelle Folge und $a \in \mathbb{R}$. Zeigen Sie, dass (a_n) genau dann gegen a konvergiert, wenn jede Teilfolge $(a_{n_k})_{k=1}^{\infty}$ wiederum eine gegen a konvergente Teilfolge $(a_{n_{k_j}})_{j=1}^{\infty}$ besitzt.
- (ii) Geben Sie eine divergente Folge (a_n) an, sodass jede Teilfolge $(a_{n_k})_{k=1}^{\infty}$ von (a_n) eine konvergente Teilfolge besitzt.

Aufgabe 14 (K):

(i) Bestimmen Sie für die Folgen (a_n) jeweils die Menge aller Häufungswerte und geben Sie $\liminf_{n\to\infty} a_n$ und $\limsup a_n$ an:

(a)
$$a_n := (-2 + (-1)^n)(-1)^{\frac{n(n+1)}{2}} \quad (n \in \mathbb{N}),$$

(b)
$$a_n := 8^{-n} \left(\frac{12}{n} + \frac{6n+1}{n^3} + 8 \right)^n \quad (n \in \mathbb{N}),$$

(c)
$$a_n := \sqrt[n]{n + (-1)^n n}$$
 $(n \in \mathbb{N}),$

(d)
$$a_n := \begin{cases} -2 + \frac{3-n}{n}, & n = 3k - 2 \quad (k \in \mathbb{N}), \\ -2 + \left(\frac{1}{3}\right)^n, & n = 3k - 1 \quad (k \in \mathbb{N}), \\ -4 + \sqrt[n+2]{8}, & n = 3k \quad (k \in \mathbb{N}). \end{cases}$$

(ii) Es sei (a_n) eine reelle beschränkte Folge und $H(a_n)$ bezeichne die Menge aller Häufungswerte von (a_n) . Zeigen Sie, dass für jede konvergente Folge (b_k) in $H(a_n)$ gilt: $\lim_{k\to\infty} b_k \in H(a_n)$.

Aufgabe 15:

Es sei (a_n) eine Folge mit folgenden Eigenschaften:

- (i) (a_{2n}) und (a_{2n-1}) konvergieren.
- (ii) (a_{3n}) konvergiert.

Zeigen Sie, dass dann auch (a_n) konvergiert. Zeigen Sie ferner, dass diese Aussage falsch ist, wenn nur (i), aber nicht (ii) erfüllt ist.

Aufgabe 16:

(i) Es sei (a_n) eine reelle Folge mit $|a_{n+1} - a_n| \leq \frac{1}{2^n}$ für alle $n \in \mathbb{N}$. Zeigen Sie, dass (a_n) eine Cauchyfolge ist.

Hinweis: Zeigen Sie die Identität $a_{n+k}-a_n=\sum_{l=n}^{n+k-1}(a_{l+1}-a_l)$ für $k,n\in\mathbb{N}$ und verwenden Sie die Dreiecksungleichung.

- (ii) Es seien (a_n) und (b_n) beschränkte reelle Folgen. Beweisen Sie:
 - (a) $\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$,
 - (b) $\liminf_{n\to\infty} (a_n + b_n) \ge \liminf_{n\to\infty} a_n + \liminf_{n\to\infty} b_n$.

Informationen

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung.

https://ilias.studium.kit.edu/goto.php?target=crs_1896358&client_id=produktiv

Übungsschein

Jede (K)-Aufgabe wird mit maximal 10 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-7 und 8-14 **jeweils** mindestens 35 Punkte (50 % der möglichen Punktzahl) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal. Diese ist ab sofort und noch bis zum **19.02.2023** möglich.