

7. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2022/23

9. Dezember 2022

Aufgabe 25:

Für $x \in \mathbb{R}$ seien die Funktionen Sinus hyperbolicus und Cosinus hyperbolicus definiert durch

$$\sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$$
 bzw. $\cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$

Zeigen Sie die folgenden Identitäten für $x, y \in \mathbb{R}$:

(a)
$$\sinh(x) = \frac{E(x) - E(-x)}{2}$$

(b)
$$\cosh(x) = \frac{E(x) + E(-x)}{2}$$
.

$$(c) 1 = \cosh(x)^2 - \sinh(x)^2$$

(d)
$$\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$$
.

(e)
$$\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$$
.

Aufgabe 26 (K):

(i) Bestimmen Sie für die folgenden Potenzreihen jeweils den Konvergenzradius sowie die Menge aller $x \in \mathbb{R}$, in denen die Potenzreihe konvergiert:

(a)
$$\sum_{n=1}^{\infty} n^{\frac{n}{2}} x^n,$$
 (b)
$$\sum_{n=0}^{\infty} \frac{1}{(4 + (-1)^n)^{3n}} (x - 1)^{3n},$$
 (c)
$$\sum_{n=0}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n}) x^n.$$

(ii) Es sei $q \in \mathbb{N}$ mit $q \geq 3$ und $0,\overline{21} = 0,212121...$ die q-adische Entwicklung einer Zahl $a \in \mathbb{R}$. Bestimmen Sie von q abhängige Zahlen $m, n \in \mathbb{N}$ mit $a = \frac{m}{n}$.

(iii) Berechnen Sie die folgenden Grenzwerte, falls sie existieren. Der Definitionsbereich sei dabei jeweils die Menge der $x \in \mathbb{R}$, für die der Ausdruck erklärt ist.

(a)
$$\lim_{x \to 2} \frac{1}{x} \left(\frac{1}{2-x} - \frac{12}{8-x^3} \right)$$
, (b) $\lim_{x \to 3} \frac{x^2 - x}{x^2 - x - 6}$.

Aufgabe 27:

(i) Bestimmen Sie für die folgenden Potenzreihen jeweils den Konvergenzradius sowie die Menge aller $x \in \mathbb{R}$, in denen die Potenzreihe konvergiert:

(a)
$$\sum_{n=0}^{\infty} \left(\frac{n}{n+3}\right)^{n^2-3n} x^n$$
, (b) $\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n!} \frac{1}{k}\right) x^n$.

Hinweis zu (b): Zeigen Sie zunächst $\sum_{k=1}^{n!} \frac{1}{k} \le n^2$.

(ii) Berechnen Sie die folgenden Grenzwerte, falls sie existieren. Der Definitionsbereich sei dabei jeweils die Menge der $x \in \mathbb{R}$, für die der Ausdruck erklärt ist.

(a)
$$\lim_{x \to 3} \frac{x^2 + 2x - 15}{x^3 - 27},$$
(c)
$$\lim_{x \to 0} \frac{\sqrt[3]{8 + x} - 2}{x},$$

(b)
$$\lim_{x \to 0} \frac{x}{\sqrt{x+4}-2}$$
,

(c)
$$\lim_{x \to 0} \frac{\sqrt[3]{8+x}-2}{x}$$

(b)
$$\lim_{x \to 0} \frac{x}{\sqrt{x+4}-2},$$
(d)
$$\lim_{x \to 1} \frac{x^r-1}{x-1} \text{ mit } r \in \mathbb{Q}.$$

Aufgabe 28:

- (i) Schreiben Sie die folgende Zahl als 8-adische Entwicklung: 0,0111₂.
- (ii) (a) Es seien $a, b \in \mathbb{R}$ mit a < b und $f: (a, b) \to \mathbb{R}$. Weiter sei $x_0 \in (a, b)$ und $w \in \mathbb{R}$. Zeigen Sie, dass $\lim_{x \to x_0} f(x) = w$ genau dann gilt, wenn $\lim_{x \to x_0^-} f(x) = w$ und $\lim_{x \to x_0^+} f(x) = w$.
 - (b) Es sei die Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) := \frac{x^2}{|x|}$ gegeben. Zeigen Sie, dass der Grenzwert $\lim_{x \to 0} f(x)$ existiert und bestimmen Sie dessen Wert.

Informationen

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung.

https://ilias.studium.kit.edu/goto.php?target=crs_1896358&client_id=produktiv

Übungsschein

Jede (K)-Aufgabe wird mit maximal 10 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-7 und 8-14 **jeweils** mindestens 35 Punkte (50 % der möglichen Punktzahl) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal. Diese ist ab sofort und noch bis zum 19.02.2023 möglich.