

10. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2022/23

13. Januar 2023

Abgabe bis 20. Januar 2023, 13:00 Uhr

Aufgabe 37:

(i) Es sei $\emptyset \neq D \subseteq \mathbb{R}$ und (f_n) eine Folge von Funktionen $f_n \colon D \to \mathbb{R}$, welche punktweise auf D gegen eine Funktion $f: D \to \mathbb{R}$ konvergiert. Zeigen Sie: (f_n) konvergiert gleichmäßig gegen f auf D genau dann, wenn für jede Folge (x_n) in D gilt:

$$\lim_{n \to \infty} (f_n(x_n) - f(x_n)) = 0.$$

(ii) Es sei $f_n: [a,b] \to \mathbb{R}$ $(n \in \mathbb{N})$ eine Folge monoton wachsender Funktionen mit

(a)
$$f_n(a) \ge 0 \ (n \in \mathbb{N}),$$

(b)
$$\lim_{n \to \infty} f_n(b) = 0.$$

Zeigen Sie, dass (f_n) dann gleichmäßig auf [a, b] gegen 0 konvergiert.

(iii) Untersuchen Sie die folgende Funktionenreihe auf punktweise und gleichmäßige Konvergenz:

$$\sum_{n=1}^{\infty} \frac{1}{nx-n^2} \text{ für } x \in (0,1)$$

Aufgabe 38 (K):

(i) Untersuchen Sie die folgenden Funktionenfolgen bzw. -reihen auf punktweise und gleichmäßige Konvergenz und geben Sie gegebenenfalls die Grenz- bzw. Summenfunktion an:

(a)
$$f_n: [0, \infty) \to \mathbb{R}, f_n(x) := xe^{-nx} (n \in \mathbb{N}),$$

(a)
$$f_n: [0,\infty) \to \mathbb{R}, f_n(x) := xe^{-nx} (n \in \mathbb{N}),$$
 (b) $\sum_{n=0}^{\infty} \frac{\sin(x)}{(1+x^4)^n}$ für $x \in \mathbb{R}$,

(c)
$$f_n: [0,1] \to \mathbb{R}, f_n(x) := nx(1-x)^n (n \in \mathbb{N}).$$

(ii) Bestimmen Sie alle $x \in \mathbb{R}$, in denen die folgenden Funktionen $f: \mathbb{R} \to \mathbb{R}$ differenzierbar sind und berechnen Sie dort deren Ableitung.

(a)
$$f(x) := \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

(b)
$$f(x) := (1+x^2)^x$$
.

Aufgabe 39:

- (i) Es seien $f,g:\mathbb{R}\to\mathbb{R}$ zwei Funktionen. Die Funktion f sei stetig in 0 und g sei differenzierbar in 0 mit g(0) = 0. Zeigen Sie, dass das Produkt $g \cdot f : \mathbb{R} \to \mathbb{R}$, $(g \cdot f)(x) := g(x)f(x)$ in 0 differenzierbar ist und berechnen Sie die Ableitung.
- (ii) Bestimmen Sie alle $x \in \mathbb{R}$, in denen die Funktion $f : \mathbb{R} \to \mathbb{R}$ differenzierbar ist, und berechnen Sie für diese x die Ableitung f'(x):

$$f(x) := \begin{cases} x^4 - 2x^3 + x^2, & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q}, \\ 0, & \text{falls } x \in \mathbb{Q}. \end{cases}$$

Aufgabe 40:

(i) Es sei $\alpha \in \mathbb{R}$. Bestimmen Sie die Ableitung der Funktion $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) := \begin{cases} x^{\alpha} e^{-\frac{1}{x^2}}, & \text{falls } x > 0, \\ 0, & \text{falls } x \le 0, \end{cases}$$

in allen Punkten $x \in \mathbb{R}$, in denen diese existiert.

(ii) Es seien $\alpha > 0$ und die Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto |x|^{\alpha}$ gegeben. Zeigen Sie:

f ist in 0 differenzierbar $\iff \alpha > 1$.

(iii) Zeigen Sie, dass die im folgenden definierten Funktionen $f: \mathbb{R} \to \mathbb{R}$ differenzierbar sind, und berechnen Sie für jedes $x \in \mathbb{R}$ die Ableitung f'(x):

(a)
$$f(x) := (x^4 + 1)e^{x^3}$$
,

(b)
$$f(x) := |x^2 - 4|^3$$
.

Informationen

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung.

https://ilias.studium.kit.edu/goto.php?target=crs_1896358&client_id=produktiv

Übungsschein

Jede (K)-Aufgabe wird mit maximal 10 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-7 und 8-14 **jeweils** mindestens 35 Punkte (50 % der möglichen Punktzahl) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal. Diese ist ab sofort und noch bis zum **19.02.2023** möglich.