November 2023
Institut für Analysis
Dr. Patrick Tolksdorf
Henning Heister

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Übungsblatt 02 Abgabe: 10. November 2023, 13 Uhr

Aufgabe 1 (K) 2 + 2 + 1 = 5 Punkte. Bei dieser Aufgabe müssen und sollen nur die Endergebnisse abgegeben werden, der Rechenweg wird nicht bewertet.

Finden Sie für die folgenden Ausdrücke für jedes $n \in \mathbb{N}$ geschlossene Formeln, also Ausdrücke, die ohne Summe oder Produkt auskommen und nur von n abhängen.

(a)
$$\sum_{k=1}^{n} k2^{k}$$
.

(b)
$$\sum_{k=1}^{n} \frac{k}{2^k}$$
.

(c)
$$\prod_{k=1}^{n} \left(1 + \frac{1}{k}\right)$$
.

Aufgabe 2 (K) 3+3+4=10 Punkte. Bei dieser Aufgabe ist der gesamte Rechen-beziehungsweise Beweisweg abzugeben.

Beweisen Sie die folgenden Aussagen mittels vollständiger Induktion.

(a) Für jedes
$$n \in \mathbb{N}$$
 gilt $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$.

(b) Für alle
$$n \in \mathbb{N}$$
 gilt $\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1$.

(c) Für jedes $n \in \mathbb{N}$ ist $(n^3 + 5n)/6$ eine natürliche Zahl.

Aufgabe 3. Finden Sie für die folgenden Ausdrücke für jedes $n \in \mathbb{N}$ geschlossene Formeln, also Ausdrücke, die ohne Summe oder Produkt auskommen und nur von n abhängen.

(a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$
.

(b)
$$\sum_{k=1}^{n} (1-2k)^2$$
.

(c)
$$\sum_{j=1}^{n} (2j-1)^3$$
.

1

Aufgabe 4. Beweisen Sie die folgenden Aussagen mittels vollständiger Induktion.

(a) Seien $x_1,\dots,x_n\in[0,\infty).$ Dann gilt die verallgemeinerte Bernoulli-Ungleichung

$$\prod_{j=1}^{n} (1+x_j) \ge 1 + \sum_{j=1}^{n} x_j.$$

(b) Es sei $q \in \mathbb{R} \setminus \{1\}$. Zeigen Sie mithilfe vollständiger Induktion:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} \quad \text{für jedes } n \in \mathbb{N}_0.$$

- (c) Für alle $n \in \mathbb{N}$ gilt $\sum_{k=1}^{n} \frac{1}{k^2} \le 2 \frac{1}{n}$.
- (d) Für jedes $n \in \mathbb{N}$ mit $n \ge 4$ gilt $1 \cdot 2 \cdot ... \cdot n = n! \le \frac{1}{10}n^n$.
- (e) Für jedes $n \in \mathbb{N}$ ist $\frac{n(n-1)(2n-1)}{6}$ eine ganze Zahl.
- (f) $\sum_{k=1}^{2n} (-1)^{k+1} \frac{1}{k} = \sum_{k=1}^{n} \frac{1}{n+k}$,
- (g) $\sum_{k=1}^{2^{n}-1} \frac{1}{k} > \frac{n}{2}$.