10. November 2023Institut für AnalysisDr. Patrick TolksdorfHenning Heister

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Übungsblatt 03 Abgabe: 17. November 2023, 13 Uhr

Aufgabe 1 (K) 1 + 2 + 1 + 1 = 5 Punkte. Bei dieser Aufgabe müssen und sollen nur die Endergebnisse abgegeben werden, der Rechenweg wird nicht bewertet.

(a) Eine Folge heißt Nullfolge, wenn sie gegen 0 konvergiert. Es sei (a_n) eine reelle Folge. Entscheiden Sie jeweils, welche der folgenden Bedingungen erzwingt, dass (a_n) eine Nullfolge ist:

Zu jedem $\varepsilon > 0$ existiert eine solche Zahl $n_0 \in \mathbb{N}$, dass für alle $n \ge n_0$ gilt:

- (i) $|2a_n a_n^2| < \varepsilon$,
- (ii) $|a_n \cdot a_m| < \varepsilon$ für alle $m \in \mathbb{N}$.
- (b) Entscheiden Sie bei den folgenden Aussagen, ob sie wahr oder falsch sind.
 - (i) Das Produkt einer Nullfolge und einer beschränkten Folge ist eine Nullfolge.
 - (ii) Das Produkt einer beliebigen Folge mit einer Nullfolge ist beschränkt.

Aufgabe 2 (K) 2 + (3 + 3) + 2 = 10 Punkte. Bei dieser Aufgabe ist der gesamte Rechenbeziehungsweise Beweisweg abzugeben.

(a) Es seien A_1, A_2, \dots abzählbar viele abzählbare Mengen. Zeigen Sie, dass die Vereinigung

$$\bigcup_{n=1}^{\infty} A_n = \{a : \exists n \in \mathbb{N} : a \in A_n\}$$

ebenfalls abzählbar ist.

Hinweis: Nutzen Sie Aufgabe 4 (a).

- (b) Untersuchen Sie die folgenden Folgen (a_n) auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert. Beweisen Sie Ihre Aussagen.
 - (i) $a_n = (1 + 2(-1)^n)^n$

(ii)
$$a_n = \frac{1+2+\cdots+n}{1+3+\cdots+(2n-1)}$$
.

(c) Es sei $A \subseteq \mathbb{R}$ nichtleer und nach oben beschränkt. Zeigen Sie, dass dann eine Folge (a_n) existiert mit $a_n \in A$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} a_n = \sup A$.

Aufgabe 3.

1

(a) Eine Folge heißt Nullfolge, wenn sie gegen 0 konvergiert. Es sei (a_n) eine reelle Folge. Entscheiden Sie jeweils $(durch\ Beweis\ oder\ Gegenbeispiel)$, welche der folgenden Bedingungen erzwingt, dass (a_n) eine Nullfolge ist:

Zu jedem $\varepsilon > 0$ existiert eine Zahl $n_0 \in \mathbb{N}$, sodass für alle $n \ge n_0$ gilt:

- (i) $|a_n| < \sqrt{\varepsilon}$,
- (ii) $|a_n \cdot a_{n+1}| < \varepsilon$.
- (b) Beweisen oder widerlegen Sie die folgenden Aussagen.
 - (i) Das Produkt einer konvergenten Folge und einer beschränkten Folge ist ebenfalls konvergent.
 - (ii) Das Produkt einer konvergenten Folge und einer beschränkten Folge ist ebenfalls beschränkt.

Aufgabe 4.

(a) Zeigen Sie, dass die Abbildung

$$g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (m,n) \mapsto 2^{m-1}(2n-1)$$

bijektiv ist.

- (b) Untersuchen Sie die folgenden Folgen (a_n) auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert. Beweisen Sie Ihre Aussagen.
 - (i) $a_n = \sqrt{4n^2 + n + 5} 2$,

(ii)
$$a_n = \frac{(n+2)^3 - (n-1)^3}{(n-1)^2 + 2n^2 + 5}$$
.

- (c) Es seien (a_n) und (b_n) konvergente Folgen mit Grenzwert a bzw. b. Zeigen Sie, dass die Folge $c_n = \max\{a_n, b_n\}$ $(n \in \mathbb{N})$ gegen $\max\{a, b\}$ konvergiert.
- (d) Die Folge $(a_n)_{n=0}^{\infty}$ sei rekursiv definiert durch

$$a_0 = 0$$
, $a_1 = 1$, $a_n = \frac{1}{2}(a_{n-1} + a_{n-2})$ für alle $n \in \mathbb{N}$, $n \ge 2$.

Zeigen Sie, dass $a_n=\frac{2}{3}(1-\frac{(-1)^n}{2^n})$ für alle $n\in\mathbb{N}_0$ ist. Prüfen Sie diese Folge zudem auf Konvergenz.