Institut für Algebra und Geometrie Dr. Rafael Dahmen M.Sc. Maximilian Wackenhuth

Lineare Algebra 1

Wintersemester 2023/24

Übungsblatt 0

23.10.2023

Dieses Übungsblatt ist unbewertet und zählt nicht zu den den 12 Blättern für den Übungsschein.

Aufgabe 1

- a) Formalisieren Sie die Aussage "Jedes Übungsblatt schafft Unzufriedene." indem Sie Mengen für die Gesamtheit der Studierenden und Blätter einführen und den Satz mittels Aussagenlogik formulieren.
- b) Bestimmen Sie, welche der folgenden Aussagen die Negation der obigen Aussage ist.
 - (i) Es gibt kein Übungsblatt, mit dem alle zufrieden sind.
 - (ii) Es gibt keinen, der mit allen Übungsblättern unzufrieden ist.
 - (iii) Es gibt einen, der mit allen Übungsblättern zufrieden ist.
 - (iv) Es gibt ein Übungsblatt, mit dem alle zufrieden sind.
 - (v) Alle sind mit jedem Übungsblatt zufrieden.

(Sie dürfen annehmen, dass man entweder zufrieden oder unzufrieden ist.)

Aufgabe 2

Es seien \mathcal{A} und \mathcal{B} Aussagen. Wir führen mittels einer Wahrheitstafel eine neue Art, zwei Aussagen zu kombinieren, ein:

\mathcal{A}	\mathcal{B}	$ \mathcal{A} \mathcal{B}$
\overline{w}	w	f
w	f	w
f	w	w
f	f	w

- a) Zeigen Sie, dass $\mathcal{A}|\mathcal{B}$ äquivalent zu $\neg(\mathcal{A} \wedge \mathcal{B})$ ist.
- b) Zeigen Sie, dass $\mathcal{A}|\mathcal{A}$ und $\neg \mathcal{A}$ äquivalent sind.
- c) Drücken Sie auch die anderen logischen Operatoren $\land, \lor, \Longrightarrow, \iff$ durch | aus.

Aufgabe 3

Es seien A und I Mengen und für jedes $i \in I$ sei M_i eine Menge. Zeigen Sie:

a)
$$A \times \bigcap_{i \in I} M_i = \bigcap_{i \in I} (A \times M_i)$$

b)
$$\bigcup_{i \in I} \mathcal{P}(M_i) \subseteq \mathcal{P}(\bigcup_{i \in I} M_i)$$

c) Gilt in b) auch die umgekehrte Inklusion? Beweisen oder widerlegen Sie.

Abgabe: Für dieses Blatt gibt es keine Abgabe.