{ "cells": [ { "cell_type": "markdown", "id": "4514df5a", "metadata": { "deletable": false, "editable": false, "nbgrader": { "cell_type": "markdown", "checksum": "afdd688f5fea87dc279f436f9b100ce3", "grade": false, "grade_id": "cell-ed521fc2ea9083a4", "locked": true, "schema_version": 3, "solution": false, "task": false } }, "source": [ "# Exercise Sheet No. 12\n", "\n", "---\n", "\n", "> Machine Learning for Natural Sciences, Summer 2024, Jun.-Prof. Pascal Friederich, pascal.friederich@kit.edu\n", "> \n", "> Tutor : Navid Haghmoradi, navid.haghmoradi@kit.edu\n", "---\n", "**Topic**: This exercise sheet will introduce you to bayes optimization and gaussian processes." ] }, { "cell_type": "markdown", "id": "e7241a2b", "metadata": {}, "source": [ "Please add here your group members names and student IDs. \n", "\n", "You are encouraged to work in groups of a maximum of 3 people, however **each of you** has to submit a solution.\n", "\n", "Names: Nils Lennart Bruns\n", "\n", "IDs: 2460137" ] }, { "cell_type": "code", "execution_count": 1, "id": "bf442c4e", "metadata": { "deletable": false, "editable": false, "nbgrader": { "cell_type": "code", "checksum": "e45533001d0fc82a1cf4dd7b1200b3d5", "grade": false, "grade_id": "cell-30b1cf8f8431ef53", "locked": true, "schema_version": 3, "solution": false, "task": false } }, "outputs": [ { "data": { "text/plain": [ "'1.14.0'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "##### DO NOT CHANGE #####\n", "import scipy\n", "scipy.__version__\n", "\n", "##### DO NOT CHANGE #####" ] }, { "cell_type": "markdown", "id": "a1468767", "metadata": { "deletable": false, "editable": false, "nbgrader": { "cell_type": "markdown", "checksum": "1018ef73da5cde067d0d55721f098e33", "grade": false, "grade_id": "cell-f176d0c9f29a4e71", "locked": true, "schema_version": 3, "solution": false, "task": false } }, "source": [ "In this exercise we will work on a prototypical implementation of Bayesian Optimization (BayesOpt) based on Gaussian Processes (GP). \n", "\n", "With BayesOpt we denote a class of machine-learning-based optimization methods based on a sequential strategy and designed for black-box derivative-free global optimization. In the following part is the pseudocode of BayesOpt framework:\n", "\n", "
BayesOpt
\n", " for n = 1,2,... do