

Klausur zur Bachelorprüfung Höhere Mathematik II Fachrichtungen: biw/ciw/geod/mach/mit/mwt/vt

Karlsruhe, 2. September 2024

Aufgabe 1

Bestimmen Sie alle komplexen Zahlen $z\in\mathbb{C},$ die die folgende Gleichung erfüllen,

$$(4\cos^2(z) - 3) e^{2iz} = i$$
.

Aufgabe 2

Die Folgen (a_n) und (b_n) in \mathbb{R} sind rekursiv gegeben durch $a_1=1,\,b_1=2$ und

$$a_{n+1} = 2a_n + b_n,$$

$$b_{n+1} = a_n + 2b_n.$$

für $n \in \mathbb{N}$. Weiter ist die Folge (c_n) definiert durch $c_n = \frac{a_n}{b_n}$.

- (a) Begründen Sie, warum (a_n) und (b_n) divergieren.
- (b) Zeigen Sie die Rekursion $c_{n+1} = \frac{2c_n+1}{c_n+2}$ und die Abschätzungen $0 \le c_n \le 1$ für alle $n \in \mathbb{N}$.
- (c) Ist die Folge (c_n) konvergent ? Beweisen Sie ihre Antwort. Wenn ja, berechnen Sie den Grenzwert $\lim_{n\to\infty}c_n$.

Aufgabe 3

Für welche $x \in \mathbb{R}$ konvergiert die Potenzreihe

$$\left(\sum_{n=0}^{\infty} \frac{n}{n^2 + 1} (2x - 2)^{3n+1}\right).$$

Aufgabe 4

Berechnen Sie eine Lösung $u: \mathbb{R}_{\geq 1} \to \mathbb{R}$ des Anfangswertproblems

$$u'(x) + \frac{2u(x)}{x} - e^x \sqrt{u(x)} = 0$$

mit $u(1) = \frac{1}{4}$.

Aufgabe 5

Gegeben ist die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} -2x^2 + ax + b, & x \le 0, \\ (1+x)^{\frac{1}{x}}, & x > 0, \end{cases}$$

mit Parametern $a, b \in \mathbb{R}$.

- (a) Bestimmen Sie $a, b \in \mathbb{R}$ so, dass f auf \mathbb{R} stetig differenzierbar ist.
- (b) Begründen Sie, dass f mit den Parametern a,b aus Teil (a) im Intervall (-1,1) ein Maximum besitzt (Hinweis: $e \approx 2.7$).

Lösung zu 1: Einsetzen des Kosinus in die Gleichung ergibt

$$4\left(\frac{e^{iz} + e^{-iz}}{2}\right)^2 - 3 = ie^{-2iz}$$

bzw.

$$e^{2iz} + e^{-2iz} - 1 - ie^{-2iz} = 0$$

Setzen wir $u = e^{2iz}$, so ergibt sich die quadratische Gleichung

$$u^2 - u + (1 - i) = 0$$
.

Quadratische Ergänzung führt auf

$$\left(u - \frac{1}{2}\right)^2 = -\frac{3}{4} + \mathrm{i}.$$

Wir berechnen die Wurzeln der rechten Seite. Mit dem Ansatz $(x+iy)^2=-\frac{3}{4}+i$ ergeben sich aus Real- und Imaginärteil die beiden Gleichungen

$$2xy = 1$$
, $x^2 - y^2 = -\frac{3}{4}$.

Einsetzen der ersten Gleichung in die zweite liefert die reelle quadratische Gleichung $y^4 - \frac{3}{4}y^2 - \frac{1}{4} = 0$, und wir berechnen die Lösungen $y^2 = 1$ oder $y^2 = -\frac{1}{4}$. Da y reell ist, kommt nur die erste Lösung in Betracht. Also sind $(x+iy) = \pm (\frac{1}{2}+i)$ die beiden möglichen Wurzeln und wir erhalten

$$u = 1 + i$$
 oder $u = -i$.

Mit z = a + ib ergeben sich somit Lösungen der Gleichung durch

$$e^{-2b}(\cos(2a) + i\sin(2a)) = e^{2iz} = \begin{cases} -i \\ 1+i. \end{cases}$$

Im ersten Fall ergibt sich $e^{-2b} = |-i| = 1$ und $2a = \arg(-i) = \frac{3\pi}{2} + 2\pi n$ bzw.

$$b = 0$$
 und $a = \left(\frac{3}{4} + n\right)\pi$, $n \in \mathbb{Z}$.

Im zweiten Fall erhalten wir aus $e^{-2b} = |1 + i| = \sqrt{2}$ und $2a = \arg(1 + i) = \frac{\pi}{4} + 2\pi n$ bzw.

$$b = -\frac{1}{2}\ln(\sqrt{2}) = -\frac{1}{4}\ln(2)$$
 und $a = \left(\frac{1}{8} + n\right)\pi$, $n \in \mathbb{Z}$.

Damit haben wir alle Lösungen der Gleichung

$$z = \left(\frac{3}{4} + n\right)\pi$$
 oder $z = \left(\frac{1}{8} + n\right)\pi - \frac{i}{4}\ln(2)$

mit $n \in \mathbb{Z}$ bestimmt.

Lösung zu 2: zu (a) Um Divergenz der Folgen zu sehen lässt sich das Minorantenkriterium nutzen, indem wir induktiv $a_n, b_n \geq 2^{n-1}$ zeigen. Mit $a_1 = 1$ und $b_1 = 2$ ist ein Induktionsanfang gegeben. Mit der Induktionsannahme $a_n, b_n \geq 2^{n-1}$ ist durch

$$a_{n+1} = 2a_n + b_n > 2a_n > 2 \cdot 2^{n-1} = 2^n$$

und analog für b_n der Induktionsschritt gegeben.

zu (b) Auch diese Aussage zeigen wir induktiv. Mit $c_1 = \frac{a_1}{b_1} = \frac{1}{2} \in [0, 1]$ ist der Induktionsanfang offensichtlich. Für einen Induktionsschritt berechnen wir die Rekursionsformel

$$c_{n+1} = \frac{a_{n+1}}{b_{n+1}} = \frac{2a_n + b_n}{a_n + 2b_n} = \frac{2\frac{a_n}{b_n} + 1}{\frac{a_n}{b_n} + 2} = \frac{2c_n + 1}{c_n + 2},$$

wobei $b_n \neq 0$ wegen Teilaufgabe (a) gilt. Machen wir nun die Indutkionsannahme, dass $c_n \in [0,1]$ gilt. so folgt offensichtlich $c_{n+1}>0$ und aus $c_n-1\leq 0$ ergibt sich $2c_n-c_n+1-2\leq 0$ bzw. $2c_n+1\leq c_n+2$. Also ist

$$c_{n+1} = \frac{2c_n + 1}{c_n + 2} \le 1$$
.

Insgesamt erhalten wir durch die Induktion $0 \le c_n \le 1$ für alle $n \in \mathbb{N}$.

Alternative zur Abschätzung in der Induktion: Betrachten wir die rationale Funktion mit $f(x) = \frac{2x+1}{x+2}$ auf dem Intervall [0,1], so ergibt sich mit der Ableitung $f'(x) = \frac{3}{(x+2)^2} > 0$, dass f monton steigend ist. Damit folgt $\frac{1}{2} = f(0) \le f(x) \le f(1) = 1$ und wir erhalten in der obigen Induktion aus $c_n \in [0,1]$ auch $c_{n+1} \in [0,1]$.

zu (c) Mit dem Montoniekriterium ergibt sich Konvergenz der Folge (c_n) , wenn wir noch Monotonie zeigen, da die Folge nach Teil (b) beschränkt ist. Die Folge ist monoton steigend, was aus

$$c_{n+1} - c_n = \frac{2c_n - 1 - c_n(c_n + 2)}{c_n + 2} = \frac{1 - c_n^2}{c_n + 2} \ge 0$$

folgt.

Den Grenzwert $c = \lim_{n \to \infty} c_n$ berechnen wir aus der Fixpunktgleichung

$$c = \frac{2c+1}{c+2}$$
 bzw. $c(c+2) - (2c+1) = c^2 - 1 = 0$

und erhalten c=1, da $c_n\geq 0$ und somit auch $c\geq 0$ gilt.

Lösung zu 3: Wir können etwa das Quotientenkriterium nutzen. Betrachten wir

$$\begin{split} \frac{\frac{n+1}{(n+1)^2+1}|2x-2|^{3n+4}}{\frac{n}{n^2+1}|2x-2|^{3n+1}} &= \frac{n+1}{n} \frac{n^2+1}{(n+1)^2+1} |2x-2|^3 \\ &= (1+\frac{1}{n}) \frac{1+\frac{1}{n^2}}{1+\frac{2}{n}+\frac{2}{n^2}} |2x-2|^3 \\ &\to 8 |x-1|^3, \quad n \to \infty \, . \end{split}$$

Das Quotientenkriterium greift, wenn der letzte Ausdruck kleiner Eins, also wenn $|x-1|<\frac{1}{2}$ gilt. Somit ist der Konvergenzradius $r=\frac{1}{2}$ und die Potenzreihe konvergiert für $x\in(\frac{1}{2},\frac{3}{2})$.

Ausserdem ist die Reihe divergent für $x \notin \left[\frac{1}{2}, \frac{3}{2}\right]$.

Für die Randpunkte $x = \frac{1}{2}$ und $x = \frac{3}{2}$ erhalten wir die Reihen

$$\left(\sum_{n=0}^{\infty} \frac{n}{n^2 + 1} (-1)^{3n+1}\right) = -\left(\sum_{n=1}^{\infty} \frac{1}{n + \frac{1}{n}} (-1)^n\right)$$

bzw.

$$\left(\sum_{n=0}^{\infty} \frac{n}{n^2 + 1} (1)^{3n+1}\right) = \left(\sum_{n=1}^{\infty} \frac{1}{n + \frac{1}{n}}\right).$$

Mit $\frac{1}{n+\frac{1}{n}} \in [\frac{1}{n+1}, \frac{1}{n}]$ für n > 0 ergibt sich mit dem Leibnizkriterium Konvergenz im ersten Fall. Im zweiten Fall ist die Reihe divergent, da die divergente harmonische Reihe, $\sum_{n=1}^{\infty} \frac{1}{n+1} = \sum_{n=0}^{\infty} \frac{1}{n}$, eine Minorante liefert.

Insgesamt folgt, dass die Reihe für $x \in \left[\frac{1}{2}, \frac{3}{2}\right]$ konvergiert und sonst divergiert.

Lösung zu 4: Es handelt sich um eine Bernoulli Differentialgleichung. Wir substituieren $v(x)=(u(x))^{\frac{1}{2}}$ und erhalten aus

$$\frac{1}{2}u^{-\frac{1}{2}}u' + \frac{1}{x}u^{\frac{1}{2}} - \frac{e^x}{2} = 0$$

die lineare Differentialgleichung

$$v'(x) + \frac{1}{x}v(x) - \frac{e^x}{2} = 0$$
.

Wir lösen zunächst die zugehörige homogene Differentialgleichung

$$\frac{v_0'(x)}{v_0(x)} = -\frac{1}{x} \,.$$

Integration dieser separblen DGL ergibt

$$\ln(|v_0(x)|) = -\ln(|x|) + \tilde{c}, \text{ bzw. } v_0(x) = \frac{c}{x}.$$

Für Lösungen der inhomogenen linearen Differentialgleichung machen wir den Ansatz $v(x) = c(x) \frac{1}{x}$ und erhalten nach Einsetzen in die Gleichung

$$c'(x) = \frac{x e^x}{2}.$$

Partielle Integration führt auf

$$c(x) = \frac{1}{2} \int x e^x dx = \frac{1}{2} x e^x - \frac{1}{2} \int e^x dx = \frac{1}{2} (x - 1) e^x + k.$$

Also bekommen wir

$$v(x) = \frac{x-1}{2x} e^x + \frac{k}{x}.$$

Mit der Anfangsbedingung $u(1) = \frac{1}{4}$ gilt $v(1) = \frac{1}{2}$, und wir erhalten $k = \frac{1}{2}$. Insgesamt ergibt sich die Lösung

$$v(x) = \frac{1}{2} \left((1 - \frac{1}{x})e^x + \frac{1}{x} \right)$$

und somit ist

$$u(x) = \frac{1}{4} \left((1 - \frac{1}{x})e^x + \frac{1}{x} \right)^2.$$

Bem.: Die ebenso möglich Substitution mit $v(x) = -\sqrt{u(x)}$ führt analog auf dieselbe Lösung.

Lösung zu 5: Für x>0 und für x<0 bestehen beide Zweige aus Kombinationen stetig differenzierbarer Funktionen, und somit ist die Funktion in Stellen $x\neq 0$ stetig differenzierbar.

Weiterhin gilt

$$\lim_{x \to 0, x > 0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0, x > 0} e^{\frac{\ln(1+x)}{x}} = e;$$

denn mit der Regel von L'Hospital ist

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{1+x} = 1$$

und die exp-Funktion ist stetig. Also gilt $\lim_{x>0,x\to0}f(x)=$ e. Mit $\lim_{x\to0,x<0}(-2x^2+ax+b)=b$ folgt b=e .

Für die Ableitung der Funktion mit x > 0 gilt

$$f'(x) = e^{\frac{\ln(1+x)}{x}} \left(\frac{x - (1+x)\ln(1+x)}{x^2(1+x)} \right)$$

Mit zweimaliger Anwendung der Regel von L'Hospital erhalten wir den Grenzwert

$$\lim_{x \to 0} \frac{x - (1+x)\ln(1+x)}{x^2(1+x)} = \lim_{x \to 0} \frac{-\ln(1+x)}{2x + 3x^2} = \lim_{x \to 0} \frac{-1}{(1+x)(2+6x)} = -\frac{1}{2}$$

Also folgt $\lim_{x\to 0, x>0} f'(x) = -\frac{e}{2}$. Auf dem Zweig mit x<0 ist $\lim_{x\to 0, x<0} f'(x) = \lim_{x\to 0} -4x + a = a$. Die Funktion ist somit stetig differenzierbar auf \mathbb{R} , wenn wir $a=-\frac{e}{2}$ und b=e setzen. zu (b) Mit Teilaufgabe (a) ist f auf dem kompakten Intervall [-1,1] insbesondere stetig. Also besitzt f eine Maximalstelle $x_{\max} \in [-1,1]$. Da mit $f(-1)=\frac{3}{2}e-2 < e$, $f(1)=e^{\ln 2}=2 < e$ und f(0)=e an den Randpunkten x=-1 und x=1 kein Maximum der Funktion ist, folgt $x_{\max} \in (-1,1)$ liegt im Inneren des Intervalls.