

Klausur zur Bachelorprüfung Höhere Mathematik I Fachrichtungen: biw/ciw/geod/mach/mit/mwt/vt

Karlsruhe, 8. September 2023

Aufgabe 1

Mit einem Startwert $a_0 \in (0, \frac{4}{9})$ ist die rekursiv definierte Folge

$$a_{n+1} = \sqrt{a_n} - \frac{a_n}{2} \quad n \in \mathbb{N}_0,$$

gegeben.

- (a) Zeigen Sie: für alle $n\in\mathbb{N}$ gilt $a_n\in(0,\frac49)$. Hinweis: Betrachten Sie $\frac89-2a_{n+1}$ für die obere Abschätzung.
- (b) Beweisen Sie, dass die Folge konvergiert.
- (c) Berechnen Sie den Grenzwert dieser Folge.

Aufgabe 2

Es ist $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$ gegeben durch

$$f(x) = \begin{cases} \cos^2(x) \, \ln(\cos(x)), & x \in \left[0, \frac{\pi}{2}\right) \\ a, & x = \frac{\pi}{2}. \end{cases}$$

- (a) Bestimmen Sie $a \in \mathbb{R}$ so, dass die Funktion stetig ist.
- (b) Zeigen Sie mit dem Wert für a aus Teil (a) die Abschätzungen

$$-\frac{1}{2e} \le f(x) \le 0 \quad \text{für } x \in \left[0, \frac{\pi}{2}\right] .$$

Aufgabe 3

Die Funktion $f:(1-r,1+r)\to\mathbb{R}$ ist gegeben durch eine Potenzreihe

$$f(x) = \sum_{n=2}^{\infty} \frac{\left(\sqrt{n^2 - n - 2} - n\right)^n}{n} (x - 1)^n, \quad x \in (1 - r, 1 + r),$$

wobei $r \geq 0$ den Konvergenzradius der Potenzreihe bezeichnet.

(a) Berechnen Sie den Grenzwert

$$\lim_{n \to \infty} \left(\sqrt{n^2 - n - 2} - n \right)$$

- (b) Bestimmen Sie den Konvergenzradius r der Potenzreihe.
- (c) Berechnen Sie an der Stelle x = 1 die dritte Ableitung $f^{(3)}(1)$.

Aufgabe 4

Bestimmen Sie alle Lösungen $z \in \mathbb{C}$ der Gleichung

$$\sin(\mathrm{i}z) = \sin(\frac{\mathrm{i}}{2}z) \,.$$

Aufgabe 5

Berechnen Sie mit Substitution und partieller Integration das Integral

$$\int_{a}^{b} \frac{(\ln(x))^{2}}{x} \cos\left(\ln(\ln(x))\right) dx$$

auf dem Intervall [a, b] mit a = e und $b = e^{\left(e^{\frac{\pi}{2}}\right)}$.

Lösung zu 1: zu (a) Wir zeigen die Aussage induktiv. Mit a_0 ist ein Induktionsanfang gegeben. Nehmen wir nun an, dass $0 < a_n < \frac{4}{6}$ gilt, so ergibt sich zunächst

$$a_{n+1} = \sqrt{a_n} - \frac{a_n}{2} = \sqrt{a_n} (1 - \frac{\sqrt{a_n}}{2}).$$

Wegen der Annahme ist $\sqrt{a_n} > 0$ und

$$1 - \frac{\sqrt{a_n}}{2} \ge 1 - \frac{1}{3} > 0$$
.

Also folgt $a_{n+1} > 0$. Berechnen wir weiterhin mit quadratischer Ergänzung

$$\frac{4}{9} - a_{n+1} = \frac{4}{9} - \sqrt{a_n} + \frac{a_n}{2} = \frac{1}{2} \left(a_n - 2\sqrt{a_n} + \frac{8}{9} \right) = \frac{1}{2} \left((\sqrt{a_n} - 1)^2 - \frac{1}{9} \right).$$

Aus $0 < a_n < \frac{4}{9}$ folgt $0 < \sqrt{a_n} < \frac{2}{3}$ bzw. $-1 < \sqrt{a_n} - 1 < -\frac{1}{3}$, und wir sehen $(\sqrt{a_n} - 1)^2 \in (\frac{1}{9}, 1)$. Insbesondere ergibt sich aus obiger Rechnung $\frac{4}{9} - a_{n+1} > 0$. Insgesamt haben wir $a_{n+1} \in (0, \frac{4}{9})$ gezeigt und mit Induktion folgt die Aussage für alle $n \in \mathbb{N}$.

zu (b) Mit der Beschränkung $a_n \in (0, \frac{4}{9})$ aus Teil (a) erhalten wir

$$a_{n+1} - a_n = \sqrt{a_n} - \frac{3}{2}a_n = \sqrt{a_n}\left(1 - \frac{3}{2}\sqrt{a_n}\right) > 0$$

für jedes $n \in \mathbb{N}$. Somit ist die Folge $(a_n)_{n \in \mathbb{N}}$ monoton steigend, und das Montoniekriterium liefert Konvergenz der Folge.

zu (c) Aus der Fixpunktgleichung

$$a = \sqrt{a} - \frac{a}{2}$$

für den Grenzwert $a = \lim_{n \to \infty} a_n$ der Folge berechnen wir

$$\frac{3}{2}a = \sqrt{a}$$
 bzw. $\sqrt{a} = \frac{2}{3}$,

da aufgrund der Monotonie der Folge (a_n) für den Grenzwert $a \neq 0$ gelten muss. Also ist $a = \frac{4}{9}$ der gesuchte Grenzwert.

Lösung zu 2: zu (a) Für $x \in [0, \frac{\pi}{2})$ ist f als Produkt stetiger Funktionen auch stetig. Für die Stetigkeit in $x = \frac{\pi}{2}$ betrachten wir mit der Regel von L'Hospital

$$\lim_{x \to \frac{\pi}{2}} \cos^2(x) \ln(\cos(x)) = \lim_{x \to \frac{\pi}{2}} \frac{\ln(\cos(x))}{\frac{1}{\cos^2(x)}} = \lim_{x \to \frac{\pi}{2}} \frac{-\frac{1}{\cos(x)} \sin(x)}{\frac{2}{\cos^3(x)} \sin(x)} = \lim_{x \to \frac{\pi}{2}} -\frac{1}{2} \cos^2(x) = 0.$$

Also ist f stetig auf $[0, \frac{\pi}{2}]$, wenn a = 0 gesetzt wird.

zu (b) Da $\cos(x) \ge 0$ und $\ln(\cos(x)) \le 0$ auf $[0, \frac{\pi}{2})$ ist, ergibt sich die Abschätzung $f(x) \le 0$ auf dem Intervall.

Weiterhin genügt es wegen $f(0) = f(\frac{\pi}{2}) = 0$ für die Abschätzung nach unten Minimalstellen von f in $(0, \frac{\pi}{n})$ zu bestimmen. Wir berechnen kritische Punkte aus

$$0 = f'(x) = -\cos(x)\sin(x)(2\ln(\cos(x)) + 1).$$

Die einzige Nullstelle der Ableitung im Intervall $(0, \frac{\pi}{2})$ ergibt sich aus $\ln(\cos(\hat{x})) = -\frac{1}{2}$. Also liegt in $\hat{x} = \arccos(e^{-\frac{1}{2}})$ ein Minimum und wir erhalten

$$f(x) \ge f(\hat{x}) = e^{-1} \ln(e^{-\frac{1}{2}}) = -\frac{1}{2e}$$

Lösung zu 3: zu (a) Es gilt mit der dritten Binomischen Formel

$$\left(\sqrt{n^2 - n - 2} - n\right) = \frac{\left(\sqrt{n^2 - n - 2} - n\right)\left(\sqrt{n^2 - n - 2} + n\right)}{\left(\sqrt{n^2 - n - 2} + n\right)}$$

$$= \frac{n^2 - n - 2 - n^2}{\left(n\sqrt{1 - \frac{1}{n} - \frac{2}{n^2}} + n\right)}$$

$$= \frac{-1 - \frac{2}{n}}{\left(\sqrt{1 - \frac{1}{n} - \frac{2}{n^2}} + 1\right)} \to -\frac{1}{2} \quad \text{für } n \to \infty .$$

zu (b) Wir berechnen den Konvergenzradius mit Hilfe des Wurzelkriteriums: Mit dem Resultat aus Teil (a) und $\lim_{n\to\infty} \sqrt[n]{n} = 1$ ist

$$\lim_{n \to \infty} \left| \frac{\left(\sqrt{n^2 - n - 2} - n \right)^n}{n} (x - 1)^n \right|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{\left| \sqrt{n^2 - n - 2} - n \right|}{\sqrt[n]{n}} |x - 1| = \frac{1}{2} |x - 1|$$

Daraus ergibt sich der Konvergenzradius r=2.

zu (c) Da f durch eine Potenzreihe gegeben ist, ist diese identisch mit der Taylorreihe zu f um $x_0=1$ und ein Koeffizientenvergleich liefert

$$\frac{f^{(3)}(1)}{3!} = \frac{\left(\sqrt{n^2 - n - 2} - n\right)^n}{n} \bigg|_{n=2} = \frac{(-1)^3}{3}.$$

Also erhalten wir

$$f^{(3)}(1) = -2.$$

Lösung zu 4: Mit der Euler'schen Formel erhalten wir aus der Gleichung die Identität

$$\frac{e^{-z} - e^z}{2i} = \frac{e^{-\frac{z}{2}} - e^{\frac{z}{2}}}{2i}.$$

Mit der Sustitution $u = e^{-\frac{z}{2}}$ ergibt sich nach Multiplikation mit u^2 die Gleichung

$$u^4 - u^3 + u - 1 = 0$$
.

Offensichtlich sind $u_{1,2} = \pm 1$ Lösungen dieser Gleichung und mit der Faktorisierung

$$\begin{array}{ll} u^4-u^3+u-1 & = (u^2-1)(u^2-u+1) \\ \frac{u^4-u^2}{-u^3+u^2+u-1} \\ \frac{-u^3+u}{u^2-1} \\ \frac{u^2-1}{0} \end{array}$$

ergeben sich weitere Lösungen aus $u^2-u+1=(u-\frac{1}{2})^2+\frac{3}{4}=0$. Die Quadratische Ergänzung führt auf

 $u_3 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ und $u_4 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$.

Um alle Lösungen der ursprünglichen Gleichung zu bestimmen, betrachten wir für $j=1,\dots,4$ die Umkehrungen

 $-\frac{z}{2} = \ln(u_j) + 2\pi n \,\mathbf{i}, \quad n \in \mathbb{Z}.$

Mit dem komplexen Logarithmus erhalten wir

$$\begin{split} &\ln(u_1) = \ln(1) = 0\,, \quad \ln(u_2) = \ln(-1) = 0 + \mathrm{i}\pi\,, \\ &\ln(u_3) = \ln(|u_3|) + \mathrm{i}\arg(u_3) = 0 + \mathrm{i}\frac{\pi}{3}\,, \quad \ln(u_4) = 0 - \mathrm{i}\frac{\pi}{3}\,. \end{split}$$

Insgesamt ergeben sich alle Lösungen zu

$$z \in \left\{ 4n\pi \, \mathbf{i}, -\frac{2\pi}{3} \mathbf{i} + 4n\pi \, \mathbf{i}, 2\pi \mathbf{i} + 4n\pi \, \mathbf{i}, \frac{2\pi}{3} \mathbf{i} + 4n\pi \, \mathbf{i} : n \in \mathbb{Z} \right\}.$$

Lösung zu 5: Zunächst substituieren wir $u = \ln(x)$ und erhalten mit $du = \frac{1}{x}dx$ das Integral

$$\int_{c}^{e^{(e^{\frac{\pi}{2}})}} \frac{(\ln(x))^{2}}{x} \cos(\ln(\ln(x))) dx = \int_{1}^{e^{\frac{\pi}{2}}} u^{2} \cos(\ln(u)) du.$$

Das Integral auf der rechten Seite integrieren wir zweimal partiell. Wir erhalten

$$\int_{1}^{e^{\frac{\pi}{2}}} u^{2} \cos(\ln(u)) du = \frac{1}{3} u^{3} \cos(\ln(u)) \Big|_{1}^{e^{\frac{\pi}{2}}} + \frac{1}{3} \int_{1}^{e^{\frac{\pi}{2}}} u^{2} \sin(\ln(u)) du$$

$$= \frac{1}{3} u^{3} \cos(\ln(u)) \Big|_{1}^{e^{\frac{\pi}{2}}} + \frac{1}{3} \left[\frac{1}{3} u^{3} \sin(\ln(u)) \right]_{1}^{e^{\frac{\pi}{2}}}$$

$$- \frac{1}{3} \int_{1}^{e^{\frac{\pi}{2}}} u^{2} \cos(\ln(u)) du \right].$$

Also folgt

$$\frac{10}{9} \int_{1}^{e^{\frac{\pi}{2}}} u^{2} \cos(\ln(u)) du = u^{3} \left(\frac{1}{3} \cos(\ln(u)) + \frac{1}{9} \sin(\ln(u)) \right) \Big|_{1}^{e^{\frac{\pi}{2}}} = \frac{1}{9} e^{\frac{3\pi}{2}} - \frac{1}{3}.$$

Insgesamt ergibt sich

$$\int_{e}^{e^{e^{\frac{\pi}{2}}}} \frac{(\ln(x))^2}{x} \cos(\ln(\ln(x))) dx = \frac{1}{10} e^{\frac{3\pi}{2}} - \frac{3}{10}.$$

Alternative: Die Substitution $u = \ln(\ln(x))$ mit $du = \frac{1}{x \ln(x)} dx$ führt auf

$$\int_{e}^{e^{(e^{\frac{\pi}{2}})}} \frac{(\ln(x))^2}{x} \cos(\ln(\ln(x))) dx = \int_{0}^{\frac{\pi}{2}} e^{3u} \cos(u) du.$$

Auch bei dieser Variante hilft zweimal partiell Integrieren weiter, und es ergibt sich

$$\int_0^{\frac{\pi}{2}} e^{3u} \cos(u) \, du = e^{\frac{3\pi}{2}} - 3 - 9 \int_0^{\frac{\pi}{2}} e^{3u} \cos(u) \, du \, .$$

Das Ergebnis bestimmen wir wie oben.