12. März 2008

14.00 - 17.00 Uhr

NT			
Name:			
Vorname:			
Matrikelnummer			

Bitte beachten Sie:

Die Bearbeitungszeit beträgt 180 Minuten. Bitte geben Sie auf dem Deckblatt sowohl Namen als auch Matrikelnummer an.

Beginnen Sie die Lösungen der Aufgaben 1 bis 7 jeweils auf einem neuen Blatt. Nummerieren Sie die Blätter und schreiben Sie auf jedes Blatt Ihren Namen, Ihre Matrikelnummer sowie die Nummer der Aufgabe.

Die Lösung der Aufgabe 8 ist in den Bearbeitungsbogen einzutragen. Schreiben Sie deshalb auf die entsprechenden Blätter Ihren Namen und Ihre Matrikelnummer.

Bitte markieren Sie deutlich die Endergebnisse.

Aufgabe	1	2	3	4 ~	5	6	7	8	Σ
Mögliche Punkte	10	14	9	24	15	7	8	13	100
Erreichte Punkte									

Viel Erfolg!

Name:

Matrikel-Nr.:

Klausur TM 1/1

Aufgabe 1

(Inscessing 10) Punkte

Eine Kugel mit dem Radius R und der inhomogenen Massendichte $\rho(r)$ ist an einem massenlosen Draht wie in Abb. 1.1 dargestellt aufgehängt. Der Draht hat die Querschnittsfläche A_r die Länge I_r den Etastizitätsmodul E und die Anfangsfließspannung σ_{E0} . Die Erdbeschleunigung ist gleich g.

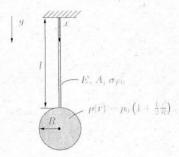


Abbildung 1.1: Auf Draht aufgehängte Kugel

1) Berechnen Sie die Masse der Kugel mit Hilfe der Kugelkoordinaten $\{r,\varphi,\vartheta\}$. Hinweis: Für das Volumenelement in Kugelkoordinaten gilt $\mathrm{d}V = \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z = \sin(\vartheta)r^2\,\mathrm{d}r\,\mathrm{d}\varphi\,\mathrm{d}\vartheta$ mit den Wertebereichen für die Winkel $-\pi \le \varphi \le \pi$ und $0 \le \vartheta \le \pi$ (vgl. Abb. 1.2).

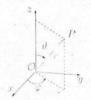


Abbildung 1.2: Kugelkoordinaten

- 2) Bestimmen Sie für den Draht mit der Querschnittstläche A die Normalspannung σ(x), das Verzerrungsfeld ε(x) und das Verschiebungsfeld u(x) sowie die maximale Verschiebung u_{max}. An welcher Stelle tritt diese auf? Stellen Sie die Verläufe der Normalspannung, des Verschiebungs- und des Verzerrungsfelds grafisch dar.
- 3) Dimensionieren Sie den Draht gegen plastisches Fließen für einen Sicherheitsfaktor S=3. Welchen Wert darf der Durchmesser d_{\min} nicht unterschreiten?

Name:

Matrikel-Nr.:

Klausur TM 1/II

Klausur IM I/II

Aufgabe 1 - Lösung

(Insgesamt 10 Punkte)

1) Berechnung der Masse der Kugel:

$$m = \frac{11\pi\rho_0 R^3}{6} \tag{1}$$

2) Berechnung von $\sigma(x)$, $\varepsilon(x)$, u(x) und u_{\max} :

$$\sigma(x) = \frac{11\pi\rho_0 R^3 g}{6A}, \ \varepsilon(x) = \frac{11\pi\rho_0 R^3 g}{6AE}, \ u(x) = \frac{11\pi\rho_0 R^3 g}{6AE} x, \ u_{\max} = \frac{11\pi\rho_0 R^3 g l}{6AE}$$
 (2)

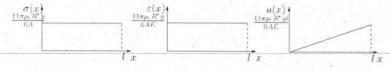


Abbildung 1.3: Verlauf der Spannung, der Dehnung und der Verschiebung

3) Dimensionierung des Drahts:

$$d \ge d_{min} = \sqrt{22 \frac{\rho_0 R^8 g}{\sigma_{F0}}}.$$
(3)

Name:

Matrikel-Nr.:

Klausur TM 1/11

Aufgabe 2

· (Insgesamt 14 Punkte)

Ein fest eingespannter Balken AB (Abb. 2.2) der Länge 2I und dem axialen Flächenträgheitsmoment I_{ij} besteht aus zwei Werkstoffen mit den Elastizitätsmoduli- $E_2 = 2E_1 = 2E$. Im Punkt B wird der Balken durch die Kraft F belastet und durch eine Feder mit der Federsteifigkeit C elastisch gelagert.

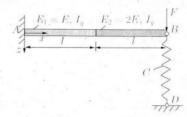


Abbildung 2.1: Inhomogener Balken

Abbildung 2.2: Balken mit elastischer Lagerung

- 1) Bestimmen Sie die Gesamtfedersteifigkeit $C_B = F/w_B$ des Balkens in Abb. 2.1 mit Hilfe der Differentialgleichung der Biegelinie unter Vernachlässigung des Einflusses der Querkraft auf die Verformung.
- 2) Berechnen Sie die Formänderungsenergie der Konstruktion in Abb. 2.2 infolge einer Verschiebung $w_B=w(2l)$ im Punkt B in Richtung der Kraft F mit Hilfe der Federsteifigkeiten C_B und C.
- 3) Mit den Ergebnissen von Teilaufgabe 2) ist die vertikale Verschiebung w_B des Punkts B bzgl. des angegebenen Koordinatensystems {x, y, z} infolge der Kraft F mit Hilfe einer Energiemethode zu berechnen.
- 4) Welcher Schaltungstyp liegt zwischen dem Balken und der Feder vor? Geben Sie die Gesamtsteifigkeit der Konstruktion Construktion
- 5) Berechnen Sie die Kraft F_f in der Feder mit der Steifigkeit C.
 Anmerkung: Zeichnen Sie das Freikörperbild, das zur Lösung der Teilautgabe 1) notwendig ist. Verwenden Sie bei der Lösung das in der Aufgabe angegebene Koordinatensystem {x, y, z}.

Aufgabe 2 - Lösung

(Insgesamt 14 Punkte)

1) Federsteifigkeit des Balkens:

$$C_B = \frac{F}{w^{II}(2l)} = \frac{2EI_y}{5l^3}$$
 (4)

2) Formänderungsenergie:

$$W_{\text{ges}} = \frac{w_B^2}{2} \left(\frac{2EI_y}{5l^3} + C \right) \tag{5}$$

3) Vertikale Verschiebung:

$$w_B = F \left(\frac{2EI_y}{5l^3} + C \right)^{-1} = \frac{5l^3F}{2EI_y + 5l^3C}$$
 (6)

- 4) Schaltungstyp: Parallelschaltung $C_{\rm ges} = C_B + C$
- 5) Federkraft F_f :

$$F_{f} = w_{B}C = \frac{5l^{3}FC}{2EI_{y} + 5l^{3}C}$$
 (7)

Aufgabe 3

Name:

(Insersant 9 Punkl)

Ein ideales Fachwerk, das aus starren Stäben besteht, ist im Punkt A durch ein gelenkiges Lager und im Punkt B durch ein Gleitlager gelagert (Abb. 3.1). Die Belastung erfolgt durch die vertikale Kraft F.

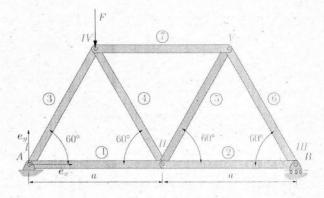


Abbildung 3.1: Fachwerk

 Überprüfen Sie, ob die notwendige Bedingung für innerliche statische Bestimmtheit des Fachwerks erfüllt ist.

Hinweis: Die notwendige Bedingung für statische Bestimmtheit eines Fachwerks lautet

wobei r die Anzahl der Reaktionsgrößen, n die Anzahl der Stäbe und k die Anzahl der Knoten sind.

- Berechnen Sie die Reaktionsgrößen im Punkt A (A, und A) mit Hilfe der Gleichgewichtsbedingungen.
- 3) Berechnen Sie die vertikale Auflagerreaktion B_q mit dem Prinzip der virtuellen Verschiebungen. Stellen Sie die von Ihnen verwendeten virtuellen Verschiebungen und Verdrehungen grafisch dar.
- 4) Bestimmen Sie die Normalkräfte in den Stäben 1 und 7.
 Anmerkung: Verwenden Sie bei der Lösung die für die Stäbe und Knoten vorgegebene Nummerierung.

Aufgabe 3 - Lösung

(Insgesamt 9 Punkte)

1) Notwendige Bedingung für statische Bestimmtheit:

$$r = 3, \quad n = 7, \quad k = 5, \quad r + n = 2k = 10$$
 (8)

2) Reaktionsgrößen im Punkt A:

$$A_x = 0, \quad A_y = \frac{3F}{4}$$
(9)

3) Reaktionsgröße By mit PdvV:

$$B_y = \frac{F}{4} \tag{10}$$

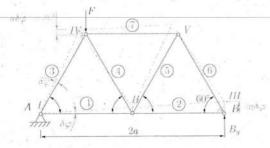


Abbildung 3.2: Virtuelle Verschiebungen und Verdrehungen

4) Berechnung der Stabkräfte 1 und 7:

$$S_7 = -\frac{\sqrt{3}}{6}F, \quad S_1 = \frac{\sqrt{3}}{4}F$$
 (11)

Aufgabe 4

(Insgesamt 24 Punkte)

Ein Biegebalken (Abb. 4.1 (links)) wird durch die Einzelkraft F_0 und das Einzelmoment $M_{\rm D}=2F_{\rm D}a$ belastet. Der Balken wird durch ein Festlager im Punkt A und ein Loslager im Punkt B gelagert. Das Profil des Balkens ist in Abb. 4.1 (rechts) dargestellt. Gegeben sind F_0 , a, b und $\alpha \in (0, \pi/2)$.

Anmerkung: Verwenden Sie bei der Lösung der Aufgabe das angegebene Koordinatensystem $\{x, y, z\}$.

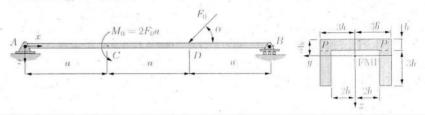


Abbildung 4.1: Balken belastet durch Einzelmoment und -kraft (links) mit dickwandigem Profil (rechts)

- 1) Berechnen Sie die Reaktionsgrößen in den Punkten A und B.
- 2) Bestimmen Sie die Verläufe der Schnittgrößen und stellen Sie diese grafisch dar. Geben Sie explizit die Werte des Biegemoments an den Grenzen der Schnittgrößenbereiche an.
- 3) Bestimmen Sie die Größe und Lage der betragsmäßig maximalen Biegespannungim Balken (ohne Berücksichtigung des Einflusses der Querkräfte).
- 4) Bestimmen Sie die Spannungsmatrix bzgl. des x-y-z-Koordinatensystems an der Stelle der betragsmäßig größten Normalspannung (ohne Berücksichtigung des Einflusses der Ouerkräfte).
- 5) Berechnen Sie die maximale Schubspannung infolge des Einflusses der Querkräfte im Schnitt P bei z = -b/2.

6

Aufgabe 4 - Lösung

(Insgesamt 24 Punkte)

1) Reaktionsgrößen:

$$A_x = F_0 \cos \alpha$$
, $B_z = \frac{2F_0 (\sin \alpha - 1)}{3}$, $A_z = \frac{F_0 (\sin \alpha + 2)}{3}$ (12)

2) Schnittgrößenverlauf:

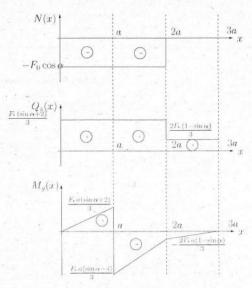


Abbildung 4.2: Schnittgrößenverlauf

Bereich $T(0 \le x < a)$

$$\boxed{N^I(x) = -F_0\cos\alpha, \quad Q^I(x) = \frac{F_0\left(\sin\alpha + 2\right)}{3}, \quad M_y^I(x) = \frac{F_0\left(\sin\alpha + 2\right)x}{3}}$$

Bereich II ($a \le x < 2a$)

$$\boxed{N^{II}(x) = -F_0 \cos \alpha, \quad Q^{II}(x) = \frac{F_0 \left(\sin \alpha + 2 \right)}{3}, \quad M_y^{II}(x) = \frac{F_0 \left(\sin \alpha + 2 \right) x}{3} - 2F_0 a}$$

Bereich III $(2a \le x \le 3a)$

$$\boxed{N^{III}(x) = 0, \quad Q^{III}(x) = \frac{2F_0 \left(1 - \sin \alpha\right)}{3}, \quad M_y^{III}(x) = \frac{2F_0 \left(\sin \alpha - 1\right)}{3} \left(3a - x\right)}$$

D Universität Karlsruhe (TH)

Institut für Technische Mechanik

5 TM MI F_08

Universität Karlsruhe (TH)

Institut für Technische Mechanik

 $M_y^I(0) = 0, \quad M_y^I(a) = \frac{F_0 a \left(\sin \alpha + 2\right)}{3}, \quad M_y^{II}(a) = \frac{F_0 a \left(\sin \alpha - 1\right)}{3},$ $M_y^{II}(2a) = M_y^{III}(2a) = \frac{2F_0 a \left(\sin \alpha - 1\right)}{3}, \quad M_y^{III}(3a) = 0$ (13)

3) Betragsmäßig maximale Biegespannung:

Name:

$$\sigma_B^{\text{max}} = \frac{M^H(a)}{I_y} \frac{5b}{2} = -\frac{5F_0 a (4 - \sin \alpha)}{402b^3}$$
(14)

4) Spannungsmatrix an der Stelle $x = \lim_{\epsilon \to 0} (a + \epsilon)$ und z = 5b/2:

$$\boldsymbol{\sigma}\left(x = \lim_{\varepsilon \to 0} \left(a + \varepsilon\right), \ z = \frac{5b}{2}\right) = \left(\begin{array}{ccc} -\frac{F \cdot \cos \alpha}{12E} - \frac{5f \cdot \sin \alpha}{102E} & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{array}\right)$$

5) Maximale Schubspannung im Schnitt P:

$$\tau_{iso}^{max} = \frac{F_0(\sin \alpha + 2)}{47b^2}$$
(15)

Aufgabe 5

(Insgesamt 15 Punkte)

Eine statisch unbestimmt gelagerte Torsionswelle mit den Durchmessern d bzw. 2d und $r_K/d=0$, 19 wird durch die konstante Streckenlast (Momentendichte) $m_T=\mathrm{const}$ für $x\in[0,2l]$ belastet. Die Schubfließspannung τ_{F0} und der Schubmodul G sind gegeben. Die Längen der beiden Bereiche sind 2l bzw. l.

Anmerkung: Verwenden Sie bei der Lösung der Teilaufgaben eines der beiden in Abb. 5.1 angegebenen Koordinatensysteme $(\{x,y,z\},\{x,r,\varphi\})$.

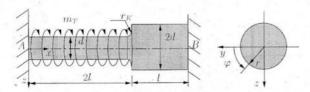


Abbildung 5.1: Statisch unbestimmt gelagerte Törsionswelle

- 1) Bestimmen Sie die Reaktionsmomente in den Punkten A und B (ohne Energiemethoden).
- 2) Bestimmen Sie den Verlauf der maximalen Schubspannung entlang der *x*-Achse (ohne Kerbwirkung) und stellen Sie diesen grafisch dar. Geben Sie explizit die Werte der maximalen Schubspannung an den Bereichsgrenzen an.
- 3) Berechnen Sie unter Berücksichtigung der Kerbwirkung den minimalen zulässigen Durchmesser d der Welle bzgl. τ_{F0} (siehe Abb. 5.2).

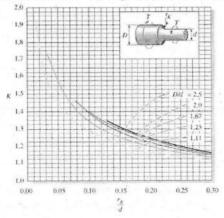


Abbildung 5.2: Torsions-Spannungskonzentrationsfaktor K (Quelle: Hibbeler: Technische Mechanik 2 - Festigkeitslehre. Springer 2006)

10

Aufgabe 5 - Lösung

(Insgesamt 15 Punkte)

1) Reaktionsmomente M_A und M_B :

$$M_A = \frac{34lm_T}{33}$$
, $M_B = \frac{32lm_T}{33}$ (16)

2) Maximale Schubspannungen:

$$0 \le x < 2l$$
, $\tau_{\varphi x}^{I}(d/2, x) = \frac{M_{T}^{I}(x)}{I_{L}^{I}} \frac{d}{2} = \frac{46m_{T}}{33\pi d^{3}}(-34I + 33x)$ (17)

$$2l \le x \le 3l$$
, $\sigma_{\varphi x}^{H}(d,x) = \frac{M_{T}^{H}(x)}{l_{y}^{H}}d = \frac{64m_{T}l}{33\pi d^{3}}$ (18)

$$\tau_{\varphi x}^{I}(d/2, 0) = -\frac{544m_{T}l}{33\pi d^{3}}, \quad \tau_{\varphi x}^{I}(d/2, 2l) = \frac{512m_{T}l}{33\pi d^{3}}$$
(19)

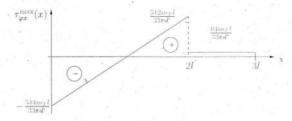


Abbildung 5:3: Verlauf der maximalen Schubspannung

11

3) Minimaler zulässiger Durchmesser:

$$d > d_{min} = \sqrt{\frac{640m_T l}{33\pi \tau_{fil}}}$$
. (20)

Aufgabe 6

(Insgesamt 7 Punkte)

Auf einem um eine Rolle geschlungenen Seil (Umschlingungswinkel $\pi/2$) hängt ein Gewicht mit der Gewichtskraft G_2 . Das linke Seilende ist mit einem Block mit der Gewichtskraft G_1 verbunden. Die Haftgrenzzahlen zwischen dem Block und der Unterlage und zwischen der Rolle und dem Seil betragen μ_{01} und μ_{02} . Gegeben sind zudem die Längen a und b.

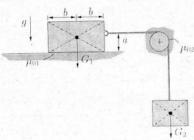


Abbildung 6.1: Starrkörpersystem mit Seil

- 1) Wie groß darf G_2 maximal sein, so dass noch Haften vorliegt?
- 2) Welches Verhältnis a/b muss vorliegen, so dass der Block aus dem Haftzustand heraus nicht kippt?

Aufgabe 6 - Lösung

(Insgesamt 7 Punkte)

1) Bestimmung von G_2 beim Haften:

$$G_2 \le G_{2 \text{ max}} = G_1 \mu_{61} \exp\left(\mu_{02} \frac{\pi}{2}\right)$$
 (21)

2) Bedingung gegen Kippen des Blocks:

$$\left| \frac{a}{b} \le \frac{1}{\mu_{01}} \le \frac{G_1}{S_1} \right| \tag{22}$$

Name:

Matrikel-Nr.:

Klausur TM I/II

Aufgabe 7

(Insgesamt 8 Punkte)

Gegeben ist das Verschiebungsfeld u in Abhängigkeit von den Koordinaten x,y und z

$$\mathbf{u} = \begin{pmatrix} 2x + y \\ -x + y - z \\ z - 2x \end{pmatrix} \cdot 10^{-3}.$$

1) Berechnen Sie den Verschiebungsgradienten H und zerlegen Sie diesen in einen symmetrischen Anteil ε und einen schiefsymmetrischen Anteil Ω .

Hinweis:

$$m{H} = \left(egin{array}{cccc} rac{\partial u}{\partial x} & rac{\partial u}{\partial y} & rac{\partial u}{\partial z} \ rac{\partial v}{\partial x} & rac{\partial v}{\partial y} & rac{\partial v}{\partial z} \ rac{\partial w}{\partial x} & rac{\partial w}{\partial y} & rac{\partial w}{\partial z} \end{array}
ight), \quad m{arepsilon} = rac{1}{2} \left(m{H} + m{H}^{\mathsf{T}}
ight), \quad m{\Omega} = rac{1}{2} \left(m{H} - m{H}^{\mathsf{T}}
ight)$$

2) Berechnen Sie die Spannungsmatrix σ mit dem isotropen Hooke'schen Gesetz für den Schubmodul $G=80\,\mathrm{GPa}$ und die Querkontraktionszahl $\nu=0,3$. Wie groß ist der hydrostatische Druck p? Zerlegen Sie die Spannungsmatrix in einen sphärischen Anteil σ° und einen deviatorischen Anteil σ' .

14

Name:

Matrikel-Nr.:

Klausur TM I/II

Aufgabe 7 - Lösung

(Insgesamt 8 Punkte)

1) Berechnung von H, ε und Ω :

$$H = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix} \cdot 10^{-3}$$
(23)

$$\boldsymbol{\varepsilon} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & -\frac{1}{2} \\ -1 & -\frac{1}{2} & 1 \end{pmatrix} \cdot 10^{-3}, \quad \boldsymbol{\Omega} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & -\frac{1}{2} \\ -1 & \frac{1}{2} & 0 \end{pmatrix} \cdot 10^{-3}$$
(24)

2) Berechnung von σ , σ ° und σ ′:

$$\sigma = 160 \begin{pmatrix} 5 & 0 & -1 \\ 0 & 4 & -\frac{1}{2} \\ -1 & -\frac{1}{2} & 4 \end{pmatrix} \text{ MPa} = \begin{pmatrix} 800 & 0 & -160 \\ 0 & 640 & -80 \\ -160 & -80 & 640 \end{pmatrix} \text{ MPa}$$
 (25)

$$p = -\frac{2080}{3} \text{MPa} \approx -693, 33 \text{MPa}$$
 (26)

$$\sigma^{\circ} = \frac{2080}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} M l^{1}a \approx \begin{pmatrix} 693, 33 & 0 & 0 \\ 0 & 693, 33 & 0 \\ 0 & 0 & 693, 33 \end{pmatrix} M l^{1}a$$
(27)

$$\sigma' = \begin{pmatrix} \frac{320}{3} & 0 & -160 \\ 0 & -\frac{160}{3} & -80 \\ -160 & -80 & -\frac{160}{3} \end{pmatrix} \text{ MPa} \approx \begin{pmatrix} 106, 67 & 0 & -160 \\ 0 & -53, 33 & -80 \\ -160 & -80 & -53, 33 \end{pmatrix} \text{ MPa}$$

Aufgabe 8

(Insgesamt 13 Punkte)

 Zeichnen Sie den Querschnitt in der
 y-z-Ebene, dessen Flächenträgheitsmomente im nachfolgenden MAPLE-Code berechnet werden. Die Längen a und b seien bereits in MAPLE als positive Zahlen definiert.

```
> I_1_z_bar := (2*b)^3*a/12:
> I_1_y_bar := (-a/2)^2*(a*2*b) + a^3*(2*b)/12:
> I_2_y_bar := int( int( (r*sin(phi))^2*r ; r=0..b), phi=0..pi):
> I_2_z_bar := int( int( (r*cos(phi))^2*r , r=0..b), phi=0..pi):
> I_gesamt_y_bar := I_1_y_bar + I_2_y_bar:
> I_gesamt_z_bar := I_1_z_bar + I_2_z_bar:
```

Lösung:

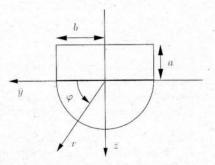


Abbildung 8.1: Querschnitt im y-z-System

2) Welches in der Vorlesung behandelte mechanische System (beschrieben in einem zugrunde gelegten x-y-Koordinatensystem) wird durch folgende Gleichung in MAPLE-Code beschrieben? Die positiven Zahlen A und B seien in MAPLE bereits definiert. Geben Sie eine präzise kurze Antwort.

```
> gleichung1 := D(D(y))(x) + A/B*sqrt(1+((D(y)(x)^2))) = 0:
```

16

Lösung: Ideales Seil unter Eigengewicht

3) Geben Sie die Gleichungen an, die durch den nachfolgenden MAPLE-Code für das mechanische System eines Balkens der Länge I beschrieben werden. Die positiven Zahlen q_0 und n_0 seien in MAPLE bereits definiert. Die x-Achse zeigt entlang der Balkenachse. Gehen Sie davon aus, dass der Balken statisch bestimmt ist. Zeichnen Sie schließlich das System mit Lagerung und Belastung ein.

> functionN :=
 unapply(rhs(dsolve({gleichung6,gleichung7},N(x))),x):

Lösung:

> gleichung7 := N(1) + n 0 = 0:

Name:

$$\frac{dQ}{dx} = -q_0, Q(I) = 0, \frac{dM}{dx} = Q(x), M(I) = 0, \frac{dN}{dx} = 0, N(I) = -n_0$$

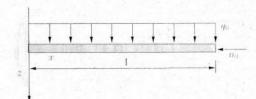


Abbildung 8.2: Balkensystem

Name: Matrikel-Nr.:

: Klausur TM I/II

- 4) Gegeben sei ein mechanisches Balkensystem (x-Achse entlang der Balkenachse, kreisförmiger Balkenquerschnitt) der Länge l unter kombinierter Biegebelastung und Torsionsbelastung. Eine Belastung durch ein Einzelmoment M_{T0} bzgl. der x-Achse an der Stelle x = l/2 sei bekannt.
 - 4.1) Welche Größe wird durch die nachfolgende Definition in MAPLE beschrieben? Die auftretenden Funktionen M_y(x), M_T_I(x), M_T_I(x), E, I_y, G, I_p seien alle bereits in MAPLE definiert.

```
> Groesse := 1/2 \star int (M_y(x)^2/(E \star I_y), x=0..1)
+ 1/2 \star int (M_T_I(x)^2/(G \star I_p), x=0..1/2)
+ 1/2 \star int (M_T_II(x)^2/(G \star I_p), x=1/2..1):
```

Lösung: Die gesamte Komplementärenergie des Balkens

- 4.2) Welcher Satz der Mechanik wird in nachfolgender MAPLE-Berechnung verwendet? Welche Größe wird hier berechnet? Geben Sie eine präzise kurze Antwort.
 - > loesung_theta := diff(Groesse,M_T0):

Lösung: Verwendet wird der erste Satz von Castigliano. Berechnet wird die Verdrehung an der Stelle x=l/2.

18