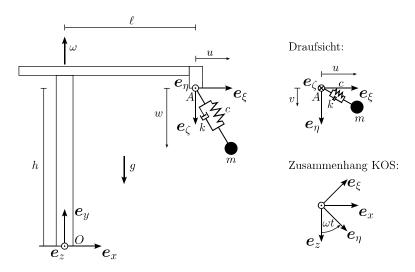
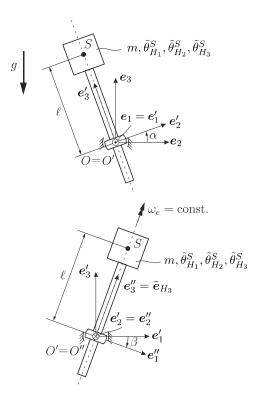
Aufgabe 1

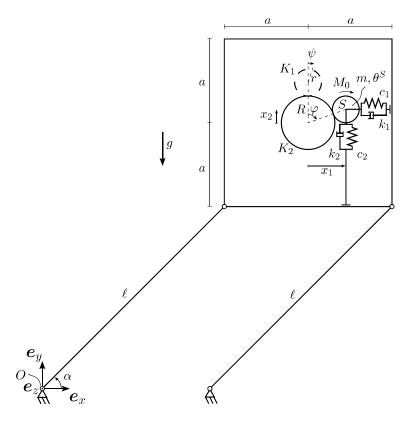


Für eine neue Form des Bungee-Jumpings dreht sich der Kran mit Korb und Springer während des Sprungs mit konstanter Winkelgeschwindigkeit ω um die e_y -Achse des $\{O,e_x,e_y,e_z\}$ -Inertialsystems. In Höhe h und mit Abstand ℓ zum Drehpunkt O befindet sich das korbfeste $\{A,e_\zeta,e_\eta,e_\zeta\}$ -Relativsystem. In der Abbildung ist der Springer nach dem Absprung als Massenpunkt (Masse m) dargestellt. Das Seil, das im Ursprung des Relativsystems und am Springer befestigt ist, wird als Feder-Dämpfer-Element (Federkonstante c, Dämpferkonstante k) modelliert. Die Lage des Springers, der sich in alle Raumrichtungen bewegen kann, wird über u,v und w in e_ζ - e_η - und e_ζ -Richtung beschrieben. Die Feder ist für u=v=w=0entspannt und die Erdgravitationsfeldstärke g wirkt in negative e_y -Richtung.

Aufgabe 2

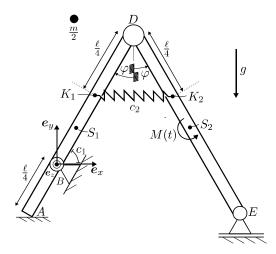


Eine Zentrifuge (Masse m) ist mit einer starren Welle in einem Kugelgelenk gelagert und dreht mit konstanter Winkelgeschwindigkeit ω_e um die körperfeste \tilde{e}_{H_3} -Achse. Außerdem vollführt die Zentrifuge eine Drehung um die raumfeste e_1 -Achse, beschrieben durch den Winkel α und eine weitere Drehung um die e_2 -Achse, beschrieben durch den Winkel β . Die Welle wird als masselos angenommen. Der Abstand des Massenmittelpunktes S der Zentrifuge zum Kugelgelenk beträgt ℓ . Die rotationssymmetrische Zentrifuge $(\tilde{\theta}_{H_1}^S = \tilde{\theta}_{H_2}^S)$ besitzt bezüglich des körperfesten, auf ihren Massenmittelpunkt S bezogenen $\{S, \tilde{e}_{H_1}, \tilde{e}_{H_2}, \tilde{e}_{H_3}\}$ -Koordinatensystems die Massenträgheitsmomente $\tilde{\theta}_{H_1}^S = \tilde{\theta}_{H_2}^S = \frac{1}{16}m\ell^2$ und $\tilde{\theta}_{H_3}^S = \frac{1}{8}m\ell^2$. Die Bewegung des Systems erfolgt im Schwerefeld der Erde mit Erdgravitationsfeldstärke g wie eingezeichnet.



Eine parallelgeführte, quadratische, masselose Box der Länge 2a wird mit Hilfe zweier masseloser Stangen der Länge ℓ befestigt. Die Stangen haben einen konstanten Winkel $\alpha=45^\circ$ zur e_x -Achse. Im Inneren der Box ist eine masselose Kreisscheibe K_2 mit Radius R mittig mit der Box fest verbunden. Auf ihr rollt eine homogene Kreisscheibe K_1 (Radius r, Masse m, Massenträgheitsmoment $\theta^S=\frac{1}{2}mr^2$) in der Ebene beginnend beim obersten Punkt von K_2 ab. Die Drehung von K_1 ist mit ψ und die Drehung um K_2 ist mit φ gekennzeichnet. Um die Rollbedingung aufrechtzuerhalten, sind Feder-Dämpfer-Elemente in jede Richtung der Ebene an K_1 angebracht, die Auslenkungen werden über die Koordinaten x_1 und x_2 beschrieben. Ihre Führung kann sich in horizontale bzw. vertikale Richtung reibungsfrei bewegen. Zusätzlich wirkt ein konstantes Moment M_0 an K_1 . Für die Ausgangslage gilt $\varphi=\psi=0$. Die Federn sind entspannt für $x_1=x_2=0$. Das System befindet sich im Schwerefeld der Erde mit Erdgravitationsfeldstärke g.

Aufgabe 4



Das gegebene mechanische System besteht aus zwei dünnen homogenen Stäben der gleichen Masse m und Länge ℓ . Die Stäbe sind im Punkt D mit einem Drehgelenk verbunden. Die Drehung der Stäbe wird durch den Winkel φ beschrieben. Stab 1 (Massenmittelpunkt S_1) ist im Punkt B über ein Drehgelenk mit der Umgebung verbunden. Eine Torsionsfeder (spannungslos bei $\varphi=0$) mit Federkonstante c_1 verbindet Stab 1 mit dem Boden. Stab 2 (Massenmittelpunkt S_2) kann sich durch das Loslager im Punkt E horizontal bewegen. Beide Stäbe sind durch eine lineare Feder (spannungslos bei $\varphi=0$) mit Federkonstante c_2 miteinander verbunden. Zusätzlich wirkt auf Stab 2 ein zeitabhängiges Moment M(t). Das aus den beiden Stäben bestehende System befindet sich zum Zeitpunkt t=0 im Ruhezustand. In diesem Zustand berührt Stab 1 den Boden in Punkt A. Ein senkrecht nach unten fallender Massenpunkt der Masse $\frac{m}{2}$ stößt mit Stab 1 in Punkt S_1 zusammen. Die Geschwindigkeit des Massenpunktes unmittelbar vor dem Stoß ist durch $-ve_y$ gegeben. Es wird angenommen, dass der Stoß rein elastisch ist. Die Reibung wird vernachlässigt. Alle anderen Zusammenhänge können der Skizze entnommen werden. Die Erdgravitationsfeldstärke g wirkt in der negativen e_y -Richtung.

Institut für Technische Mechanik Prof. Dr.-Ing. habil. A. Fidlin Prof. Dr.-Ing. C. Proppe

Bearbeitungsbögen für die Prüfung im Fach

Technische Mechanik III/IV

06. September 2024 Bearbeitungszeit: 90 Minuten

	Name: Vorname: Matrikelnum	mer:	
1	Hinweis	se zum Ausfüllen der Bearbeitungsbögen	
Die vollständige Rechnung muss auf den nachfolgenden Blättern und mit erkennbarem Lösungsweg durchgeführt werden. Reicht der vorgegebene Platz nicht aus, kann die Rechnung auf der Rückseite des <u>vorangegangenen</u> Blattes unter genauer Angabe der Aufgabenteilnummer fortgesetzt werden.			
Bitte den	durch den senkrech	tten Strich abgeteilten rechten Rand <u>nicht</u> überschreiben!	
Die Bearb	oeitungsbögen sind v	von ${f 1}$ bis ${f 12}$ durchnummeriert. Prüfen Sie bitte auf Vollständ	digkeit!
Punkte:	:		
Aufgabe Aufgabe		Aufgabe 2: Aufgabe 4:	

Matrikelnummer: Name:

Aufgabe 1

3 24H TM III+IV

1.1 Geben Sie den Ortsvektor r vom Ursprung O zum Springer im $\{O, e_x, e_y, e_z\}$ -System an. Ermitteln Sie außerdem die zugehörige Geschwindigkeit v.

$$\begin{aligned} & \boldsymbol{r} = (l+u)\boldsymbol{e}_{\xi} + (h-w)\boldsymbol{e}_{y} + v\boldsymbol{e}_{\eta} \\ & = ((l+u)\cos(\omega t) + v\sin(\omega t))\boldsymbol{e}_{x} + (h-w)\boldsymbol{e}_{y} + (v\cos(\omega t) - (l+u)\sin(\omega t))\boldsymbol{e}_{z} \\ & \boldsymbol{v} = (\dot{u}\cos(\omega t) - (l+u)\omega\sin(\omega t) + \dot{v}\sin(\omega t) + v\omega\cos(\omega t))\boldsymbol{e}_{x} - \dot{w}\boldsymbol{e}_{y} \\ & + (\dot{v}\cos(\omega t) - v\omega\sin(\omega t) - \dot{u}\sin(\omega t) - (l+u)\omega\cos(\omega t))\boldsymbol{e}_{z} \end{aligned}$$

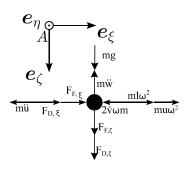
1.2 Geben Sie im Sinne der Relativkinematik die Führungsbeschleunigungen $a_{\rm F,T}$, $a_{\rm F,R}$ sowie die Coriolisbeschleunigung $a_{\rm Cor}$ und die Relativbeschleunigung $a_{\rm rel}$ des Massenpunktes in Abhängigkeit der gegebenen Größen an. Als Relativsystem ist das korbfestfeste $\{\Lambda, \mathbf{e}_{\ell}, \mathbf{e}_{n}, \mathbf{e}_{\ell}\}$ -System zu verwenden.

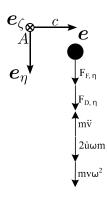
$$\begin{aligned} & \boldsymbol{a}_{rel} = \ddot{\boldsymbol{u}}\boldsymbol{e}_{\xi} + \ddot{\boldsymbol{v}}\boldsymbol{e}_{\eta} + \ddot{\boldsymbol{w}}\boldsymbol{e}_{\zeta} \\ & \boldsymbol{a}_{cor} = 2(-\omega)\boldsymbol{e}_{\zeta} \times (\dot{\boldsymbol{u}}\boldsymbol{e}_{\xi} + \dot{\boldsymbol{v}}\boldsymbol{e}_{\eta} + \dot{\boldsymbol{w}}\boldsymbol{e}_{\zeta}) \\ & = -2\dot{\boldsymbol{u}}\omega\boldsymbol{e}_{\eta} + 2\dot{\boldsymbol{v}}\omega\boldsymbol{e}_{\xi} \\ & \boldsymbol{a}_{F,R}^{r} = -\omega\boldsymbol{e}_{\zeta} \times (-\omega\boldsymbol{e}_{\zeta} \times (\boldsymbol{u}\boldsymbol{e}_{\xi} + \boldsymbol{v}\boldsymbol{e}_{\eta} + \boldsymbol{w}\boldsymbol{e}_{\zeta})) \\ & = -\boldsymbol{u}\omega^{2}\boldsymbol{e}_{\xi} - \boldsymbol{v}\omega^{2}\boldsymbol{e}_{\eta} \\ & \boldsymbol{a}_{F,R}^{t} = 0 \\ & \boldsymbol{a}_{F,T} = -l\omega^{2}\boldsymbol{e}_{\xi} \end{aligned}$$

3

$$\begin{aligned} \boldsymbol{F}_{F} &= -c\sqrt{u^{2} + v^{2} + w^{2}} \frac{1}{\sqrt{u^{2} + v^{2} + w^{2}}} (u\boldsymbol{e}_{\xi} + v\boldsymbol{e}_{\eta} + w\boldsymbol{e}_{\zeta}) \\ &= -c(u\boldsymbol{e}_{\xi} + v\boldsymbol{e}_{\eta} + w\boldsymbol{e}_{\zeta}) \\ \boldsymbol{F}_{D} &= -k\frac{u\dot{u} + v\dot{v} + w\dot{w}}{\sqrt{u^{2} + v^{2} + w^{2}}} \frac{1}{\sqrt{u^{2} + v^{2} + w^{2}}} (u\boldsymbol{e}_{\xi} + v\boldsymbol{e}_{\eta} + w\boldsymbol{e}_{\zeta}) \\ &= -k\frac{u\dot{u} + v\dot{v} + w\dot{w}}{u^{2} + v^{2} + w^{2}} (u\boldsymbol{e}_{\xi} + v\boldsymbol{e}_{\eta} + w\boldsymbol{e}_{\zeta}) \end{aligned}$$

1.4 Schneiden Sie den Massenpunkt frei und tragen Sie alle Trägheitskräfte (mit Betrag und Richtung) im Sinne d'Alemberts in die gegebene Skizze ein. Nutzen Sie für die Komponenten der Feder- und Dämpferkraft lediglich $F_{F,\xi}$, $F_{D,\xi}$, usw. und tragen Sie die e_{ξ} -Komponenten nur in die linke Skizze ein.





1.5 Geben Sie die Bewegungsgleichungen des Massenpunktes an. Setzen Sie hier die Komponenten von F_F bzw. F_D ein.

Name:

$$0 = m\ddot{u} + 2m\dot{v}\omega - ml\omega^{2} - mu\omega^{2} + cu + ku\frac{u\dot{u} + v\dot{v} + w\dot{w}}{u^{2} + v^{2} + w^{2}}$$

$$0 = m\ddot{v} - 2m\dot{u}\omega - mv\omega^{2} + cv + kv\frac{u\dot{u} + v\dot{v} + w\dot{w}}{u^{2} + v^{2} + w^{2}}$$

$$0 = m\ddot{w} - mg + cw + kw\frac{u\dot{u} + v\dot{v} + w\dot{w}}{u^{2} + v^{2} + w^{2}}$$

1.6 Für einen Sonderfall ergibt sich als Komponente der Dämpferkraft in $\boldsymbol{e}_{\zeta}\!\!-\!\!$ Richtung

$$F_{D,\zeta} = \frac{kw^2\dot{w}}{u^2 + v^2 + w^2}.$$

Linearisieren Sie diese Komponente für eine allgemeine Lage $u=u_0,$ $v=v_0,$ $w=w_0.$

Hinweis: Das Taylorpolynom 2. Grades einer skalaren Funktion $f(\boldsymbol{x})$ einer vektoriellen Variablen \boldsymbol{x} ist an der Stelle \boldsymbol{a} durch $T_2 f(\boldsymbol{x})|_{\boldsymbol{x}=\boldsymbol{a}} = f(\boldsymbol{x})|_{\boldsymbol{x}=\boldsymbol{a}} + \nabla f(\boldsymbol{x})^{\mathsf{T}}|_{\boldsymbol{x}=\boldsymbol{a}} (\boldsymbol{x}-\boldsymbol{a}) + \frac{1}{2} (\boldsymbol{x}-\boldsymbol{a})^{\mathsf{T}} H_{f(\boldsymbol{x})}|_{\boldsymbol{x}=\boldsymbol{a}} (\boldsymbol{x}-\boldsymbol{a})$ gegeben.

$$\begin{split} F_{D,\zeta}(u_0,v_0,w_0) \approx & \frac{kw_0^2\dot{w}}{u_0^2+v_0^2+w_0^2} - \frac{2kw_0^2\dot{w}u_0}{(u_0^2+v_0^2+w_0^2)^2}(u-u_0) \\ & - \frac{2kw_0^2\dot{w}v_0}{(u_0^2+v_0^2+w_0^2)^2}(v-v_0) - \frac{2kw_0\dot{w}(u_0^2+v_0^2)}{(u_0^2+v_0^2+w_0^2)^2}(w-w_0) \end{split}$$

Aufgabe 2

2.1 Geben Sie sowohl die Drehgeschwindigkeit ω_B des rotierenden $\{O'', e_1'', e_2'', e_3''\}$ -Bezugssystems gegenüber dem Inertialsystem als auch die absolute Drehgeschwindigkeit ω_Z der Zentrifuge im $\{O'', e_1'', e_2'', e_3''\}$ -Koordinatensystem an.

$$\boldsymbol{\omega}_B = \dot{\alpha} \boldsymbol{e}_1 + \dot{\beta} \boldsymbol{e}_2' \tag{1}$$

$$\mathbf{e}_1 = \mathbf{e}_1' = \cos(\beta)\mathbf{e}_2'' + \sin(\beta)\mathbf{e}_3'' \tag{2}$$

$$\mathbf{e}_{2}^{\prime} = \mathbf{e}_{2}^{\prime\prime} \tag{3}$$

(2) und (3) in (1) einsetzen:

$$\omega_B = \dot{\alpha}\cos(\beta)\mathbf{e}_1'' + \dot{\beta}\mathbf{e}_2'' + \dot{\alpha}\sin(\beta)\mathbf{e}_3''
\omega_Z = \dot{\alpha}\mathbf{e}_1 + \dot{\beta}\mathbf{e}_2' + \omega_e\mathbf{e}_3''
= \dot{\alpha}\cos(\beta)\mathbf{e}_1'' + \dot{\beta}\mathbf{e}_2'' + (\omega_e + \dot{\alpha}\sin(\beta))\mathbf{e}_3''$$

2.2 Bestimmen Sie den Vektor M^O der äußeren Momente der Zentrifuge bezüglich des Inertialsystems im $\{O'',e_1'',e_2'',e_3''\}$ -Koordinatensystem.

$$\begin{aligned} \boldsymbol{F}_{g} &= -mg\boldsymbol{e}_{3}, \boldsymbol{e}_{3} = \sin(\alpha)\boldsymbol{e}_{2}' + \cos(\alpha)\boldsymbol{e}_{3}' \\ \boldsymbol{e}_{2}' &= \boldsymbol{e}_{2}'', \boldsymbol{e}_{3}' = -\sin(\beta)\boldsymbol{e}_{2}'' + \cos(\beta)\boldsymbol{e}_{3}'' \\ \boldsymbol{F}_{g} &= -mg(-\cos(\alpha)\sin(\beta)\boldsymbol{e}_{1}'' + \sin(\alpha)\boldsymbol{e}_{2}'' + \cos(\alpha)\cos(\beta)\boldsymbol{e}_{3}'') \\ \boldsymbol{M} &= \boldsymbol{r}_{OS} \times \boldsymbol{F}_{g} = \ell\boldsymbol{e}_{3}'' \times \boldsymbol{F}_{g} \\ &= mq\ell(\sin(\alpha)\boldsymbol{e}_{1}'' + \sin(\beta)\cos(\alpha)\boldsymbol{e}_{2}'' + 0\boldsymbol{e}_{3}'') \end{aligned}$$

2.3 Berechnen Sie die Trägheitsmatrix $[\tilde{\theta}_{ij}^O]$ der Zentrifuge bezüglich des Inertialsystems im $\{O'', e_1'', e_2'', e_3''\}$ -Koordinatensystem.

$$\begin{bmatrix} \theta_{ij}^O \end{bmatrix} = \begin{bmatrix} \frac{1}{16}m\ell^2 + m\ell^2 & 0 & 0\\ 0 & \frac{1}{16}m\ell^2 + m\ell^2 & 0\\ 0 & 0 & \frac{1}{8}m\ell^2 \end{bmatrix}$$
$$\begin{bmatrix} \theta_{ij}^O \end{bmatrix} = \begin{bmatrix} \frac{17}{16}m\ell^2 & 0 & 0\\ 0 & \frac{17}{16}m\ell^2 & 0\\ 0 & 0 & \frac{1}{8}m\ell^2 \end{bmatrix}$$

2.4 Bestimmen Sie den Drall \mathbf{D}^O der Zentrifuge bezüglich des Inertialsystems im $\{O'', \mathbf{e}''_1, \mathbf{e}''_3, \mathbf{e}''_3\}$ -Koordinatensystem.

$$\begin{aligned} \boldsymbol{D}^O &= \boldsymbol{\omega}_Z \cdot \boldsymbol{\theta}^O \\ &= \frac{17}{16} m \ell^2 \dot{\alpha} \cos(\beta) \boldsymbol{e}_1'' + \frac{17}{16} m \ell^2 \dot{\beta} \boldsymbol{e}_2'' + \frac{1}{8} m \ell^2 (\omega_e + \dot{\alpha} \sin(\beta)) \boldsymbol{e}_3'' \end{aligned}$$

2.5 Werten Sie den Drallgesetz für die Zentrifuge bezüglich des Inertialsystems im $\{O'', e_1'', e_2'', e_3''\}$ -Koordinatensystem aus.

$$\boldsymbol{M}^{O} = \dot{\boldsymbol{\omega}}_{Z} \cdot \boldsymbol{\theta}^{O} + \boldsymbol{\omega}_{B} \times \boldsymbol{D}^{O}$$

$$\dot{\boldsymbol{\omega}}_{Z} \cdot \boldsymbol{\theta}^{O} = \frac{17}{16} m \ell^{2} (\ddot{\alpha} \cos(\beta) - \dot{\alpha} \dot{\beta} \sin(\beta)) \boldsymbol{e}_{1}^{"} + \frac{17}{16} m \ell^{2} \ddot{\beta} \boldsymbol{e}_{2}^{"}$$

$$+ \frac{1}{8} m \ell^{2} (\ddot{\alpha} \sin(\beta) + \dot{\alpha} \dot{\beta} \cos(\beta)) \boldsymbol{e}_{3}^{"}$$

$$\boldsymbol{\omega}_{B} \times \boldsymbol{D}^{O} = (\frac{1}{8} m \ell^{2} \omega_{e} \dot{\beta} - \frac{15}{16} m \ell^{2} \dot{\alpha} \dot{\beta} \sin(\beta)) \boldsymbol{e}_{1}^{"}$$

$$+ (\frac{15}{16} m \ell^{2} \dot{\alpha} \sin(\beta) \cos(\beta) - \frac{1}{8} m \ell^{2} \omega_{e} \dot{\alpha} \cos(\beta)) \boldsymbol{e}_{2}^{"}$$

 ${m M}$ aus 2.2 einsetzen:

$$\frac{17}{16}m\ell^2\cos(\beta)\ddot{\alpha} - 2m\ell^2\sin(\beta)\dot{\alpha}\dot{\beta} + \frac{1}{8}m\ell^2\omega_e\dot{\beta} = mg\ell\sin(\alpha)$$

$$\frac{17}{16}m\ell^2\ddot{\beta} + \frac{15}{16}m\ell^2\sin(\beta)\cos(\beta)\dot{\alpha}^2 - \frac{1}{8}m\ell^2\cos(\beta)\omega_e\dot{\alpha} = mg\ell\cos(\alpha)\sin(\beta)$$

$$\frac{1}{8}m\ell^2(\ddot{\alpha}\sin(\beta) + \dot{\alpha}\dot{\beta}\cos(\beta)) = 0$$

Name: Matrikelnummer: 6

2.6 In einem anderen Fall werden die Bewegungen einer unsymmetrischen Zentrifuge untersucht, die bezüglich des körperfesten, auf ihren Massenmittelpunkt S bezogenen $\{S, \tilde{e}_{H_1}, \tilde{e}_{H_2}, \tilde{e}_{H_3}\}$ -Hauptachsensystems die Trägheitsmomente $\tilde{\theta}_{H_1}^S = A, \tilde{\theta}_{H_2}^S = B$ und $\tilde{\theta}_{H_3}^S = C$ besitzt. Warum ist in diesem Fall die Auswertung des Dralles im $\{O'', e_1'', e_2'', e_3''\}$ -Koordinatensystem nicht von Vorteil? Begründen Sie kurz.

 $\boldsymbol{\theta}^O$ ist zeitabhängig

Name: Matrikelnummer: 7

Aufgabe 3

3.1 Bestimmen Sie den Ortsvektor \boldsymbol{r}_S sowie die zugehörige Geschwindigkeit $\boldsymbol{v}_S.$

$$\mathbf{r}_{S} = (l\cos(\alpha) + a + (R+r)\sin(\varphi))\mathbf{e}_{x} + (l\sin(\alpha) + a + (R+r)\cos(\varphi))\mathbf{e}_{y}$$

$$\mathbf{v}_{S} = (R+r)\dot{\varphi}\cos(\varphi)\mathbf{e}_{x} - (R+r)\dot{\varphi}\sin(\varphi)\mathbf{e}_{y}$$

3.2 Geben Sie die kinematischen Zusammenhänge $\psi(\varphi), x_1(\varphi)$ sowie $x_2(\varphi)$ an.

$$\mathbf{0} = (R+r)\dot{\varphi}\cos(\varphi)\mathbf{e}_{x} - (R+r)\dot{\varphi}\sin(\varphi)\mathbf{e}_{y} - \dot{\psi}\mathbf{e}_{z} \times (-r\sin(\varphi)\mathbf{e}_{x} - r\cos(\varphi)\mathbf{e}_{y})$$

$$\Rightarrow$$

$$0 = (R+r)\dot{\varphi}\cos(\varphi) - r\dot{\psi}\cos(\varphi)$$

$$0 = -(R+r)\dot{\varphi}\sin(\varphi) + r\dot{\psi}\sin(\varphi)$$

$$\Rightarrow \dot{\psi} = \frac{R+r}{r}\dot{\varphi} \Rightarrow \psi = \frac{R+r}{r}\varphi, \text{ da } \psi(0) = \varphi(0) = 0$$

$$x_{1} = (R+r)\sin(\varphi)$$

$$x_{2} = (R+r)\cos(\varphi)$$

Nachfolgend ergeben sich folgende Zusammenänge:

$$\begin{split} \dot{\psi} &= 4\dot{\varphi} \\ x_1 &= 4r\sin\varphi \\ x_2 &= 4r\cos\varphi \\ \mathbf{r}_S &= (a(2\cos\alpha + 1) + 4r\sin\varphi)\mathbf{e}_x + (a(2\sin\alpha + 1) + 4r\cos\varphi)\mathbf{e}_y \end{split}$$

Außerdem ist nun $\alpha \neq \text{const.}$ und das System dreht sich mit Winkelgeschwindigkeit $\dot{\alpha} = \text{const.}$ Hierbei handelt es sich um eine vorgegebene Bewegung. Nutzen Sie für die folgenden Aufgaben nicht die Ergebnisse der vorherigen Teilaufgaben.

3.3 Berechnen Sie die kinetische Energie E des Systems.

$$\begin{aligned} & \boldsymbol{v}_S = (-2a\dot{\alpha}\sin(\alpha) + 4r\dot{\varphi}\cos(\varphi))\boldsymbol{e}_x + (2a\dot{\alpha}\cos(\alpha) - 4r\dot{\varphi}\sin(\varphi))\boldsymbol{e}_y \\ & E = \frac{1}{2}m|\boldsymbol{v}_S|^2 + \frac{1}{2}\theta^S\dot{\psi}^2 \\ & = \frac{1}{2}m((-2a\dot{\alpha}\sin(\alpha) + 4r\dot{\varphi}\cos(\varphi))^2 + (2a\dot{\alpha}\cos(\alpha) - 4r\dot{\varphi}\sin(\varphi))^2) + \frac{16}{4}mr^2\dot{\varphi}^2 \\ & = m(2a^2\dot{\alpha}^2 + 8r^2\dot{\varphi}^2 - 8ar\dot{\alpha}\dot{\varphi}(\sin(\alpha)\cos(\varphi) + \cos(\alpha)\sin(\varphi)) + 4r^2\dot{\varphi}^2) \\ & = m(2a^2\dot{\alpha}^2 + 12r^2\dot{\varphi}^2 - 8ar\dot{\alpha}\dot{\varphi}\sin(\alpha + \varphi)) \end{aligned}$$

3.4 Berechnen Sie die potentielle Energie V des Systems.

$$V = \frac{1}{2}c_1x_1^2 + \frac{1}{2}c_2x_2^2 + mg(a(2\sin(\alpha) + 1) + 4r\cos(\varphi))$$

= $8c_1r^2\sin^2(\varphi) + 8c_2r^2\cos^2(\varphi) + mg(a(2\sin(\alpha) + 1) + 4r\cos(\varphi))$

NN in O

3.5 Berechnen Sie die Variation δW der Arbeit der potentiallosen Kräfte.

$$\begin{split} \delta W &= M_0 \delta \psi - k_1 \dot{x}_1 \delta x_1 - k_2 \dot{x}_2 \delta x_2 \\ &= 4 M_0 \delta \varphi - 16 k_1 r^2 \dot{\varphi} \cos^2(\varphi) \delta \varphi - 16 k_2 r^2 \dot{\varphi} \sin^2(\varphi) \delta \varphi \\ &= 4 (M_0 - 4 k_1 r^2 \dot{\varphi} \cos^2(\varphi) - 4 k_2 r^2 \dot{\varphi} \sin^2(\varphi)) \delta \varphi \end{split}$$

3.6 Nutzen Sie die Langrange'schen Gleichungen 2. Art, um die Bewegungsgleichung des Systems zu ermitteln.

$$\begin{split} L &= E - V = m(2a^2\dot{\alpha}^2 + 12r^2\dot{\varphi} - 8ar\dot{\alpha}\dot{\varphi}\sin(\alpha + \varphi)) - 8c_1r^2\sin^2(\varphi) \\ &\quad - 8c_2r^2\cos^2(\varphi) - mg(a(2\sin(\alpha) + 1) + 4r\cos(\varphi)) \\ &\frac{\partial L}{\partial \dot{\varphi}} = 24mr^2\dot{\varphi} - 8mar\dot{\alpha}\sin(\alpha + \varphi) \\ &\frac{d}{dt}\frac{\partial L}{\partial \dot{\varphi}} = 24mr^2\ddot{\varphi} - 8mar\dot{\alpha}\cos(\alpha + \varphi)(\dot{\alpha} + \dot{\varphi}) \\ &\frac{\partial L}{\partial \varphi} = - 8mar\dot{\alpha}\dot{\varphi}\cos(\alpha + \varphi) - 16c_1r^2\sin(\varphi)\cos(\varphi) + 16c_2r^2\sin(\varphi)\cos(\varphi) \\ &\quad + 4mgr\sin(\varphi) \\ &\text{in } \frac{d}{dt}\frac{\partial L}{\partial \dot{\varphi}} - \frac{\partial L}{\partial \varphi} = Q_{\varphi}^d; \end{split}$$

$$24mr^{2}\ddot{\varphi} - 8mar\dot{\alpha}\dot{\varphi}\cos(\alpha + \varphi)(\dot{\alpha} + \dot{\varphi}) + 8mar\dot{\alpha}\dot{\varphi}\cos(\alpha + \varphi)$$

$$+ 16c_{1}r^{2}\sin(\varphi)\cos(\varphi) - 16c_{2}r^{2}\sin(\varphi)\cos(\varphi) - 4mgr\sin(\varphi)$$

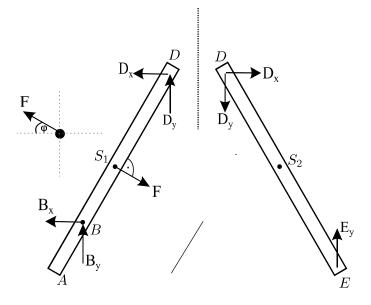
$$= 4(M_{0} - 4k_{1}r^{2}\dot{\varphi}\cos^{2}(\varphi) - 4k_{2}r^{2}\dot{\varphi}\sin^{2}(\varphi))$$

$$\Leftrightarrow 6mr^{2}\ddot{\varphi} - 2mar\dot{\alpha}^{2}\cos(\alpha + \varphi) + 4c_{1}r^{2}\sin(\varphi)\cos(\varphi) - 4c_{2}r^{2}\sin(\varphi)\cos(\varphi)$$

$$- mgr\sin(\varphi) = M_{0} - 4k_{1}r^{2}\dot{\varphi}\cos^{2}(\varphi) - 4k_{2}r^{2}\dot{\varphi}\sin^{2}(\varphi)$$

Aufgabe 4

4.1 Schneiden Sie beide Stäbe und den Massenpunkt während des Stoßes frei und zeichnen Sie alle stoßrelevanten Kräfte und Momente nach Newton in die Skizze ein.



4.2 Bestimmen Sie die Lage $\boldsymbol{r}_{S_2}(\varphi)$ des Massenmittelpunkts von Stab 2 und seine Geschwindigkeit $\boldsymbol{v}_{S_2}(\varphi,\dot{\varphi})$. Verwenden Sie das gegebene Koordinatensystem, dessen Ursprung in B liegt.

$$egin{aligned} oldsymbol{r}_{S_2} &= rac{5\ell}{4}\sin(arphi)oldsymbol{e}_x + rac{\ell}{4}\cos(arphi)oldsymbol{e}_y \ oldsymbol{v}_{S_2} &= rac{5\ell}{4}\dot{arphi}\cos(arphi)oldsymbol{e}_x + rac{\ell}{4}\dot{arphi}\sin(arphi)oldsymbol{e}_y \end{aligned}$$

4.3 Stellen Sie die notwendigen Impuls- und Drehimpulssätze in integraler Form und die Stoßzahlgleichung für den Stoßvorgang auf. Hinweis: Nehmen Sie an, dass unmittelbar nach dem Stoß v' die Geschwindigkeitskomponente des Massenpunktes in Richtung der Stoßnormale ist und $\dot{\varphi} = \omega'$ gilt (Drehrichtung der Stäbe beachten). Das resultierende Gleichungssystem muss nicht gelöst werden.

Stab 1: Drehimpulssatz um B

$$\int \left(-\frac{F\ell}{4} + \frac{3\ell}{4}D_x \cos(\varphi) + \frac{3\ell}{4}D_y \sin(\varphi)\right)dt = -\theta^B \omega'$$

$$\theta^B = \frac{7}{48}m\ell^2$$

Stab 2: Impulssatz in x-Richtung

$$\int D_x dt = (\frac{5\ell}{4}\omega'\cos(\varphi))m$$

Impulssatz in y-Richtung

$$\int (E_y - D_y)dt = -\frac{m\ell}{4}\omega'\sin(\varphi)$$

Drehimpulssatz um S_2

$$\int (\frac{E_y \ell}{2} \sin(\varphi) + \frac{D_y \ell}{2} \sin(\varphi) - \frac{D_x \ell}{2} \cos(\varphi)) dt = \theta^{S_2} \omega'$$
$$\theta^{S_1} = \theta^{S_2} = \frac{m\ell^2}{12}$$

Punktmasse: Impulsbilanz in Normalen-Richtung

$$\int Fdt = \frac{m}{2}(v' + v\sin(\varphi))$$

Stoßzahlgleichung

$$\frac{v' + \frac{\omega'\ell}{4}}{v\sin(\varphi)} = 1$$

$$\Rightarrow \frac{4v' + \omega'\ell}{4v\sin(\varphi)} = 1$$

Im Folgenden wird davon ausgegangen, dass kein Stoß zwischen dem Stabsystem und Massenpunkt stattfindet.

4.4 Bestimmen Sie die Variation $\delta W(\varphi, \delta \varphi)$ der Arbeit der Federkräfte.

$$\begin{aligned} \boldsymbol{F}_{Feder,K_1} &= c_2(2\frac{\ell}{4}\sin(\varphi))\boldsymbol{e}_x = -\boldsymbol{F}_{Feder,K_2} \\ \delta \boldsymbol{r}_{K_1} &= \frac{\ell}{2}\cos(\varphi)\delta\varphi\boldsymbol{e}_x - \frac{\ell}{2}\sin(\varphi)\delta\varphi\boldsymbol{e}_y \\ \delta \boldsymbol{r}_{K_2} &= \ell\cos(\varphi)\delta\varphi\boldsymbol{e}_x - \frac{\ell}{2}\sin(\varphi)\delta\varphi\boldsymbol{e}_y \\ \delta W_{Feder,linear} &= \boldsymbol{F}_{Feder,K_1} \cdot \delta \boldsymbol{r}_{K_1} + \boldsymbol{F}_{Feder,K_2} \cdot \delta \boldsymbol{r}_{K_2} \\ &= \frac{c_2\ell^2}{4}\sin(\varphi)\cos(\varphi)\delta\varphi - \frac{c_2\ell^2}{2}\sin(\varphi)\cos(\varphi)\delta\varphi \\ &= -\frac{\ell^2}{4}c_2\sin(\varphi)\cos(\varphi)\delta\varphi \\ \delta W_{Drehfeder} &= -c_1\varphi\delta\varphi \end{aligned}$$

4.5 Die linearisierte Bewegungsgleichung eines vergleichbaren Systems für kleine Schwingungen um $\varphi=0$ ist gegeben durch $\frac{19ml^2}{24}\ddot{\varphi}+\left(c_1+\frac{c_2l^2}{4}-\frac{mgl}{2}\right)\varphi=M(t)$ wobei das äußere Moment den zeitlichen Verlauf $M(t)=M\sin(\Omega t)$ besitzt. Tragen Sie qualitativ die Vergößerungsfunktion der resultierenden Schwingungen gegen die Erregerfrequenz Ω auf und markieren Sie alle wichtigen Werte.

