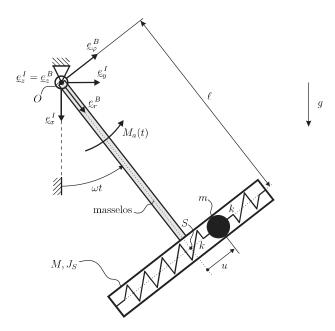
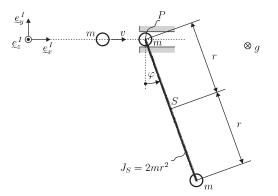
Aufgabe 1



Ein Rahmen (Masse M, Massenträgheitsmoment J_S bezüglich Schwerpunkt S) ist über eine masselose Stange (Länge ℓ) mit dem Festlager in Punkt O verbunden. Der Rahmen dreht sich infolge eines Momentes $M_a(t)$ mit konstanter Winkelgeschwindigkeit ω . Innerhalb des Rahmens wird ein Massenpunkt (Masse m) reibungsfrei geführt und zusätzlich über zwei Federn (Steifigkeiten k) elastisch gelagert. Die Verschiebung des Massenpunktes wird durch die Koordinate u beschrieben. Die Federn sind für u=0 entspannt.

Das $\{\underline{e}_x^I,\underline{e}_y^I,\underline{e}_z^I\}$ -Bezugssystem ist raumfest. In Punkt O befindet sich der Ursprung des rahmenfesten $\{\underline{e}_r^B,\underline{e}_\varphi^B,\underline{e}_z^B\}$ -Bezugssystems. Die Erdbeschleunigung g wirkt in positive \underline{e}_x^I -Richtung. Alle Reibungseinflüsse sind zu vernachlässigen.

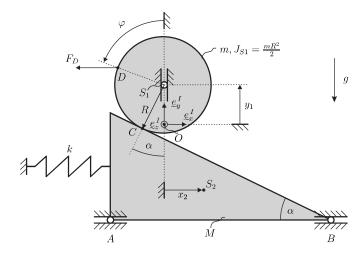
Aufgabe 2



Ein Massenpunkt (Masse m) stößt mit der Geschwindigkeit v auf einen <u>ruhenden</u> starren Körper, bestehend aus zwei Massenpunkten (Gesamtmasse 2m, Massenträgheitsmoment $J_S = 2mr^2$ bezüglich Schwerpunkt S) und einer masselosen Verbindungsstange (Länge 2r). Der starre Körper wird, wie in der Skizze dargestellt, in Punkt P entlang einer Nut in horizontaler Richtung <u>reibungsfrei</u> geführt. Die Lage des Punktes P wird durch die Koordinate x_P angegeben. Die Verdrehung des starren Körpers wird durch den Winkel φ beschrieben. Es wird angenommen, dass der Stoßvorgang vollplastisch verläuft.

Das $\{ \varrho_x^I, \varrho_y^I, \varrho_z^I \}$ -Bezugssystem ist raumfest. Die Erdbeschleunigung g wirkt in negative ϱ_z^I -Richtung. Alle Reibungseinflüsse sind zu vernachlässigen.

Aufgabe 3

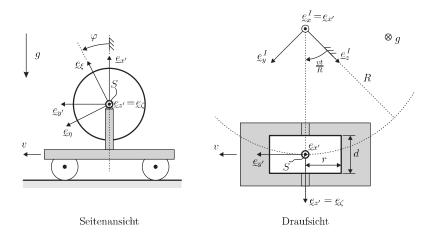


Auf einem Keil mit der Masse M, dessen Schräge mit der Horizontalen den Winkel α bildet, rollt eine homogene Walze mit dem Radius R, der Masse m, dem Massenträgheitsmoment $J_{S1} = \frac{mR^2}{2}$ bezüglich Schwerpunkt S_1 . Die Walze wird in ihrem Schwerpunkt S_1 reibungsfrei vertikal geführt. Die Lage des Schwerpunkts S_1 wird durch die Koordinate y_1 und die Verdrehung der Walze durch den Winkel φ beschrieben. Der Keil wird in den Punkten A und B reibungsfrei horizontal geführt. Die Lage des Schwerpunkts S_2 wird durch die Koordinate x_2 angegeben. Es gelten die Beziehungen $y_1(\varphi=0)=0$ und $x_2(\varphi=0)=0$.

In Punkt D der Walze greift eine in negative ϱ_x^I -Richtung wirkende konstante Kraft F_D an. Der Bewegung des Keils wirkt eine Feder (Steifigkeit k) entgegen, die für $y_1=x_2=0$ und $\varphi=0$ entspannt ist.

Das $\{\underline{e}_{x}^{I},\underline{e}_{y}^{I},\underline{e}_{z}^{I}\}$ -Bezugssystem ist raumfest. Die Erdbeschleunigung g wirkt in negative \underline{e}_{x}^{I} -Richtung. Weitere Zusammenhänge sind der Skizze zu entnehmen.

Aufgabe 4



Infolge der Energiekrise versucht man auch bei Fahrzeugen Energie einzusparen. Beispielsweise besteht die Möglichkeit, mit der bisher beim Bremsen in Wärme umgewandelten kinetischen Energie, ein Schwungrad anzutreiben. Zum Beschleunigen eines Fahrzeuges könnte die im Schwungrad gespeicherte kinetische Energie wiederverwendet werden.

Mit obigem Modell sollen mögliche Auswirkungen auf die Fahrstabilität untersucht werden, die infolge des auftretenden Kreiselverhaltens des Schwungrades bei der Kurvenfahrt entstehen. Das auf einem Fahrzeug gelagerte Schwungrad (Dichte ρ , Radius r, Dicke d, Massenträgheitsmomente J_{ξ}, J_{η} und J_{ζ} bezüglich des Schwerpunkts S) wird als homogene Scheibe modelliert und rotiert mit der konstanten Winkelgeschwindigkeit $\dot{\varphi}$ reibungsfrei um die fahrzeugfeste $\underline{e}_{z'}$ -Achse. Gleichzeitig durchfährt das Fahrzeug in der horizontalen Ebene eine Rechtskurve (Radius R) mit der konstanten Geschwindigkeit v.

Das Bezugssystem $\{ \underline{e}_x^I, \underline{e}_y^I, \underline{e}_z^I \}$ ist raumfest. Das Bezugssystem $\{ \underline{e}_{x'}, \underline{e}_{y'}, \underline{e}_{z'} \}$ ist fahrzeugfest. Das mitrotierende Bezugssystem $\{ \underline{e}_{\xi}, \underline{e}_{\eta}, \underline{e}_{\zeta} \}$ ist ein Hauptachsensystem des Schwungrades. Die Erdbeschleunigung g wirkt in negative \underline{e}_x^I -Richtung. Weitere Zusammenhänge sind der Skizze zu entnehmen.

Hinweise:

$$\int \sqrt{a^2 - x^2} \, \mathrm{d}x = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \arcsin\left(\frac{x}{a}\right) \right)$$
$$\int \sqrt{(a^2 - x^2)^3} \, \mathrm{d}x = \frac{1}{8} \left(\left(5a^2 x - 2x^3 \right) \sqrt{a^2 - x^2} + 3a^4 \arcsin\left(\frac{x}{a}\right) \right)$$

Institut für Technische Mechanik Prof. Dr.-Ing. habil. A. Fidlin Prof. Dr.-Ing. C. Proppe Prof. Dr.-Ing. W. Seemann

Bearbeitungsbögen für die Prüfung im Fach

Technische Mechanik III/IV

1. April 2022		Bearbeitungszeit: 3 Stunden
	Name:	
	Vorname:	

Hinweise zum Ausfüllen der Bearbeitungsbögen

Die vollständige Rechnung muss auf den nachfolgenden Blättern und mit erkennbarem Lösungsweg durchgeführt werden. Reicht der vorgegebene Platz nicht aus, kann die Rechnung auf der Rückseite des <u>vorangegangenen</u> Blattes unter genauer Angabe der Aufgabenteilnummer fortgesetzt werden.

Bitte den durch den senkrechten Strich abgeteilten rechten Rand nicht überschreiben!

Die Bearbeitungsbögen sind von 1 bis 9 durchnummeriert. Prüfen Sie bitte auf Vollständigkeit!

Punkte:

Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4:

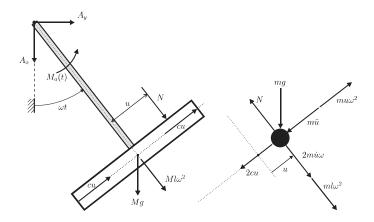
Vame: Matrikelnummer: 1

Aufgabe 1

1.1 Bestimmen Sie die absolute Beschleunigung \underline{a} des Massenpunktes. Drücken Sie Ihre Ergebnisse mithilfe der Einheitsvektoren $\left\{\underline{e}_r^B,\underline{e}_\varphi^B,\underline{e}_z^B\right\}$ aus.

$$\begin{split} & \mathcal{L} &= \mathcal{L}_{S} + u \boldsymbol{\varrho}_{\varphi}^{B} = l \cos(\omega t) \boldsymbol{\varrho}_{x}^{I} + l \sin(\omega t) \boldsymbol{\varrho}_{y}^{I} + u \boldsymbol{\varrho}_{\varphi}^{B} \\ & \dot{\mathcal{L}} &= -l \omega \sin(\omega t) \boldsymbol{\varrho}_{x}^{I} + l \omega \cos(\omega t) \boldsymbol{\varrho}_{y}^{I} + \dot{u} \boldsymbol{\varrho}_{\varphi}^{B} + \underbrace{(\omega \boldsymbol{\varrho}_{z}^{B}) \times (u \boldsymbol{\varrho}_{\varphi}^{B})}_{=-u \omega \boldsymbol{\varrho}_{r}^{B}} \\ & \boldsymbol{\varrho} &= \ddot{\mathcal{L}} = l \omega^{2} \underbrace{\left(-\cos(\omega t) \boldsymbol{\varrho}_{x}^{I} - \sin(\omega t) \boldsymbol{\varrho}_{y}^{I}\right)}_{=-\boldsymbol{\varrho}_{r}^{B}} + \ddot{u} \boldsymbol{\varrho}_{\varphi}^{B} + \underbrace{\left(\omega \boldsymbol{\varrho}_{z}^{B}\right) \times (u \boldsymbol{\varrho}_{\varphi}^{B})}_{=-\dot{u} \omega \boldsymbol{\varrho}_{r}^{B}} \\ & - \dot{u} \omega \boldsymbol{\varrho}_{r}^{B} - \underbrace{\left(\omega \boldsymbol{\varrho}_{z}^{B}\right) \times (u \omega \boldsymbol{\varrho}_{r}^{B})}_{u \omega^{2} \boldsymbol{\varrho}_{\varphi}^{B}} \\ & \boldsymbol{\varrho} &= -l \omega^{2} \boldsymbol{\varrho}_{r}^{B} + \ddot{u} \boldsymbol{\varrho}_{\varphi}^{B} - 2\dot{u} \omega \boldsymbol{\varrho}_{r}^{B} - u \omega^{2} \boldsymbol{\varrho}_{\varphi}^{B} \end{split}$$

1.2 Schneiden Sie den Rahmen und den Massenpunkt im Sinne von d'Alembert einzeln frei. Tragen Sie sämtliche Kräfte und Momente einschließlich eventuell vorhandener Trägheitswirkungen ein.



1.3 Stellen Sie die Kräftegleichgewichte des Massenpunktes auf.

$$\begin{array}{ll} \underline{e}_{r}^{B} & : & -N+2m\dot{u}\omega+ml\omega^{2}+mg\cos(\omega t)=0 \\ \underline{e}_{s}^{B} & : & -2cu-m\ddot{u}+mu\omega^{2}-mg\sin(\omega t)=0 \end{array}$$

1.4 Stellen Sie das Momentengleichgewicht des Rahmens bezüglich des Festlagers auf.

$$M_a(t) + 2lcu - l\sin(\omega t)Mg - uN = 0$$

1.5 Bestimmen Sie die Bewegungsgleichung des Systems und geben Sie das Moment $M_a(t)$ an, das benötigt wird, um die konstante Rotation des Rahmens zu erzeugen.

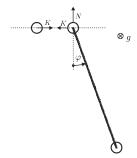
Bewegungsgleichung: $m\ddot{u} + (2c - m\omega^2)u = -mg\sin(\omega t)$

$$mit N = 2m\dot{u}\omega + ml\omega^2 + mg\cos(\omega t)$$

folgt
$$M_a(t) = -2lcu + l\sin(\omega t) + u(2m\dot{u}\omega + ml\omega^2 + mg\cos(\omega t))$$

Aufgabe 2

2.1 Schneiden Sie den Massenpunkt sowie den starren Körper zum Stoßzeitpunkt frei und zeichnen Sie alle stoßrelevanten Kräfte ein.



2.2 Stellen Sie die für den Stoß relevanten Impuls- und Drehimpulsgleichungen auf.

Massenpunkt:

$$\hat{K} = m(V_{1x} - v_{1x}) = m(V_{1x} - v)$$

$$(0 = m(V_{1y} - v_{1y}) = mV_{1y} \to V_{1y} = 0)$$

Starrkörper:

$$-\hat{K} = 2m(V_{Sx} - v_{Sx}) = 2mV_{Sx}$$

$$\hat{N} = 2m(V_{Sy} - v_{Sy}) = 2mV_{Sy}$$

$$\hat{K}r\cos\varphi - \hat{N}r\sin\varphi = J_S(\Omega - \omega) = 2mr^2\Omega$$

2.3 Ermitteln Sie in Abhängigkeit von φ zwei kinematische Beziehungen zwischen den unbekannten Geschwindigkeiten unmittelbar nach dem Stoß.

kinematische Grundgleichung:

$$\underbrace{V_P} = \underbrace{V_S} + \left(\Omega \underbrace{e_z^I}\right) \times \left(-r \sin \varphi \underbrace{e_x^I} + r \cos \varphi \underbrace{e_y^I}\right)
\rightarrow V_{Px} = V_{Sx} - r\Omega \cos \varphi
\rightarrow V_{Py} = V_{Sy} - r\Omega \sin \varphi \stackrel{!}{=} 0$$

Stoßzahlgleichung:

$$\varepsilon = -\frac{V_{Px} - V_{1x}}{v_{Px} - v_{1x}} \stackrel{!}{=} 0 \rightarrow V_{Px} = V_{1x}$$

$$V_{1x} = V_{Sx} - r\Omega\cos\varphi$$

$$0 = V_{Sy} - r\Omega\sin\varphi$$

$$\hat{K} = m(V_{1x} - v) \tag{1}$$

$$-\hat{K} = 2mV_{Sx} \tag{2}$$

$$\hat{N} = 2mV_{Sy} \tag{3}$$

$$\hat{K}r = 2mr^2\Omega \tag{4}$$

$$V_{1x} = V_{Sx} - r\Omega \tag{5}$$

$$V_{Su} = 0$$
 (6)

aus (1) und (2):
$$0 = V_{1x} + 2V_{Sx} - v$$
 (7)

aus (2) und (4):
$$2mrV_{Sx} = -2mr^2\Omega$$
 (8)

aus (7) und (8) folgt:

$$V_{Sx} = \frac{v - V_{1x}}{2} = -r\Omega$$

$$V_{1x} = v + 2r\Omega$$

mit (5) folgt:
$$V_{1x} - V_{Sx} + r\Omega = 0$$

$$\rightarrow \Omega = -\frac{v}{4v}$$

$$\rightarrow V_{Sx} = \frac{\epsilon}{2}$$

5 Matrikelnummer: Name:

Aufgabe 3

3.1 Geben Sie y_1 und x_2 in Abhängigkeit des Winkels φ sowie der Systemparameter an.

Rollbedingung:

$$\underbrace{\psi_{C}}_{l} = \underbrace{\psi_{S1}}_{l} + \underbrace{\left(\dot{\varphi}e_{z}^{I}\right) \times \left(-R\sin(\alpha)e_{x}^{I} - R\cos(\alpha)e_{y}^{I}\right)}_{=-R\dot{\varphi}\sin(\alpha)e_{x}^{I} + R\dot{\varphi}\cos(\alpha)e_{x}^{I}}$$

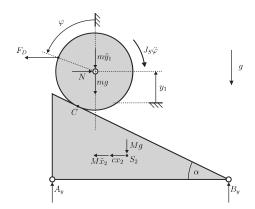
$$\underbrace{v}_{C} = \underbrace{v}_{S2} = \dot{x}_{2} \underbrace{e}_{x}^{I}$$

$$\underline{v}_{S1} = \dot{y}_1 \underline{e}_u^I$$

$$\rightarrow \dot{x}_2 = R\dot{\varphi}\cos\alpha \rightarrow x_2 = R\varphi\cos\alpha$$

$$\rightarrow \dot{y}_1 = R\dot{\varphi}\sin\alpha \rightarrow y_1 = R\varphi\sin\alpha$$

3.2 Schneiden Sie das Gesamtsystem von seiner Umgebung frei und tragen Sie alle Kräfte und Trägheitswirkungen ein.



3.3 Bestimmen Sie den Ortsvektor \underline{r}_D vom Ursprung Ozum Angriffspunkt der Kraft F_D sowie den virtuellen Verschiebungsvektor $\delta \chi_D$.

$$\underline{r}_D = -R\sin(\varphi)\underline{e}_x^I + (y_1 + R\cos(\varphi)\underline{e}_y^I)$$

$$\delta \underline{r}_D = \frac{\partial \underline{r}_D}{\partial \varphi} \delta \varphi = -R \cos(\varphi) \delta \varphi \underline{e}_x^I + \left(\frac{\partial y_1}{\partial \varphi} - R \sin \varphi \right) \delta \varphi \underline{e}_y^I$$

$$mit \quad \frac{\partial y_1}{\partial \varphi} = R \sin \alpha$$

3.4 Geben Sie die virtuelle Arbeit δW an. Ermitteln Sie mithilfe des Prinzips von d'Alembert in der Lagrangeschen Fassung die Bewegungsgleichung des Systems in der Koordinate φ .

$$\begin{split} \delta y_1 &= R \sin(\alpha) \delta \varphi \\ \delta x_2 &= R \cos(\alpha) \delta \varphi \\ \delta \underline{r}_D &= -R \cos(\varphi) \delta \varphi \underline{e}_x^I + (R \sin \alpha - R \sin \varphi) \delta \varphi \underline{e}_y^I \\ \delta W &= -J_{S1} \ddot{\varphi} \delta \varphi - (m\ddot{y}_1 + mg) \delta y_1 - F_D \underline{e}_x^I \cdot \delta \underline{r}_D - (M\ddot{x}_2 + cx_2) \delta x_2 \\ &= -J_{S1} \ddot{\varphi} \delta \varphi - (mR \sin(\alpha) \ddot{\varphi} + mg) R \sin(\alpha) \delta \varphi + F_D R \cos(\varphi) \delta \varphi \\ &- (MR \cos(\alpha) \ddot{\varphi} + cR \cos(\alpha) \varphi) R \cos(\alpha) \delta \varphi \stackrel{!}{=} 0 \end{split}$$

Bewegungsgleichung:

$$(J_{S1} + mR^2 \sin^2(\alpha) + MR^2 \cos^2(\alpha))\ddot{\varphi} + cR^2 \cos^2(\alpha)\varphi = F_D R \cos \varphi - mgR \sin \alpha$$

mit
$$J_{S1} = \frac{1}{2}mR^2$$
 folgt
$$\left(\frac{m}{2} + m\sin^2(\alpha) + M\cos^2(\alpha)\right)R\ddot{\varphi} + cR\cos^2(\alpha)\varphi = F_D\cos\varphi - mg\sin\alpha$$

Für eine bestimmte Parameterwahl ergibt sich die Bewegungsgleichung

$$\ddot{\varphi} + \varphi = F_1 \cos \varphi + F_2 \sin \alpha.$$

3.5 Linearisieren Sie zunächst die Bewegungsgleichung für kleine Winkel φ . Bestimmen Sie dann die vollständige Lösung für die Anfangsbedingungen $\varphi(0) = 0$ und $\dot{\varphi}(0) = 0$.

$$\underline{\text{für kleine Winkel } \varphi \text{ gilt: } \ddot{\varphi} + \varphi = \underbrace{F_1 + F_2 \sin \alpha}_{\text{konst}}$$

$$\varphi = \varphi_h + \varphi_p$$

$$\varphi_h = A\cos t + B\sin t$$

$$\varphi_p = C = \text{konst.} \rightarrow C = F_1 + F_2 \sin \alpha$$

$$\varphi = A\cos t + B\sin t + F_1 + F_2\sin\alpha$$

$$\dot{\varphi} = -A\sin t + B\cos t$$

$$\dot{\varphi}(0) = 0 \rightarrow B = 0$$

$$\varphi(0) = 0 \rightarrow A = -(F_1 + F_2 \sin \alpha)$$

$$\Rightarrow \varphi(t) = (F_1 + F_2 \sin \alpha)(1 - \cos t)$$

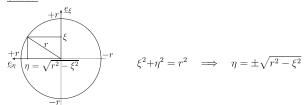
Aufgabe 4

Name:

4.1 Berechnen Sie die Massenträgheitsmomente J_{ξ} , J_{η} und J_{ζ} bezüglich des Schwerpunkts S im schwungradfesten $\{e_{\xi},e_{\eta},e_{\zeta}\}$ -Bezugssystem.

$$J_{\zeta} = \int_{-\frac{d}{2}}^{\frac{d}{2}} \int_{0}^{2\pi} \int_{0}^{r} \hat{r}^{2} \underbrace{\rho \tilde{r} d \tilde{r} d \theta d z}_{dm = \rho dV} = \rho \frac{2\pi d r^{4}}{4} = \underbrace{\rho \pi r^{2} d}_{=m} \frac{r^{2}}{2} = \frac{m r^{2}}{2}$$

Skizze:



$$\begin{split} J_{\xi} &= J_{\eta} &= \int_{-r}^{+r} \int_{-\sqrt{r^2 - \xi^2}}^{+\sqrt{r^2 - \xi^2}} \int_{-\frac{d}{2}}^{\frac{d}{2}} (\eta^2 + \zeta^2) \rho \mathrm{d}\zeta \, \mathrm{d}\eta \, \mathrm{d}\xi \\ &= 8\rho \int_{0}^{r} \int_{0}^{\sqrt{r^2 - \xi^2}} \int_{0}^{\frac{d}{2}} (\eta^2 + \zeta^2) \, \mathrm{d}\zeta \, \mathrm{d}\eta \, \mathrm{d}\xi \\ &= 8\rho \int_{0}^{r} \int_{0}^{\sqrt{r^2 - \xi^2}} \left[\eta^2 \zeta + \frac{\zeta^3}{3} \right]_{0}^{\frac{d}{2}} \, \mathrm{d}\eta \, \mathrm{d}\xi \\ &= 8\rho \int_{0}^{r} \left[\frac{d}{6} \eta^3 + \frac{d^3}{24} \eta \right]_{0}^{\sqrt{r^2 - \xi^2}} \, \mathrm{d}\xi = 8\rho \int_{0}^{r} \frac{d}{6} \sqrt{(r^2 - \xi^2)^3} + \frac{d^3}{24} \sqrt{r^2 - \xi^2} \, \mathrm{d}\xi \\ &= 8\rho \left[\frac{d}{6} \frac{1}{8} (3r^4 \arcsin(1) - 3r^4 \arcsin(0)) + \frac{d^3}{24} \frac{1}{2} (r^2 \arcsin(1) - \arcsin(0)) \right] \\ &= 8\rho \left[\frac{3\pi r^4 d}{96} + \frac{\pi r^2 d^3}{96} \right] = \frac{\rho \pi r^2 d}{12} (3r^2 + d^2) = \frac{mr^2}{4} + \frac{md^2}{12} \end{split}$$

Verwenden Sie im Folgenden die Massenträgheitsmomente $J_{\xi}=B,\ J_{\eta}=B$ und $J_{\zeta}=A$. Setzen Sie die Ergebnisse aus Teilaufgabe 4.1 nicht ein.

4.2 Bestimmen Sie die Winkelgeschwindigkeit Ω des Fahrzeugs im fahrzeugfesten $\{\varrho_{r'},\varrho_{r'},\varrho_{r'},\varrho_{r'}\}$ -Bezugssystem.

$$\mathfrak{Q} = -\Omega \underline{e}_{x'} = -\frac{v}{R} \underline{e}_{x'}$$

4.3 Bestimmen Sie die Winkelgeschwindigkeit $\underline{\omega}$ des Schwungrades im schwungradfesten $\{\underline{e}_{\xi},\underline{e}_{\eta},\underline{e}_{\zeta}\}$ -Bezugssystem.

$$\begin{split} & \underline{\omega} = \underline{\Omega} + \dot{\varphi} \underline{e}_{\zeta} = -\frac{v}{R} \underline{e}_{x'} + \dot{\varphi} \underline{e}_{\zeta} \\ & \text{mit} \quad \underline{e}_{x'} = \cos \varphi \underline{e}_{\varepsilon} - \sin \varphi \underline{e}_{y} \end{split}$$

$$\underline{\omega} = -\frac{v}{R}(\cos\varphi\underline{e}_{\xi} - \sin\varphi\underline{e}_{\eta}) + \dot{\varphi}\underline{e}_{\zeta}$$

4.4 Ermitteln Sie mithilfe des Drehimpulssatzes die Momente $M_{\xi}^{(S)}$, $M_{\eta}^{(S)}$ und $M_{\xi}^{(S)}$, die von außen auf das Schwungrad wirken.

mit Eulerschen Kreiselgleichungen:

$$J_{\xi} = J_{\eta} = B, \quad J_{\zeta} = A, \quad \dot{\varphi} = \text{konst.}, \quad v = \text{konst.}$$

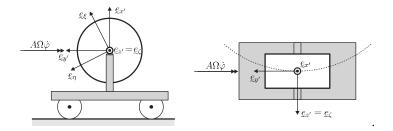
$$\omega_{\xi} = -\frac{v}{R}\cos\varphi \quad \rightarrow \dot{\omega}_{\xi} = \frac{v}{R}\dot{\varphi}\sin\varphi$$

$$\omega_{\eta} = +\frac{v}{R}\sin\varphi \quad \rightarrow \dot{\omega}_{\eta} = \frac{v}{R}\dot{\varphi}\cos\varphi$$

$$\omega_{\zeta} = \dot{\varphi} \qquad \rightarrow \dot{\omega}_{\zeta} = 0$$

$$\begin{split} M_{\xi}^{(S)} &= J_{\xi}\dot{\omega}_{\xi} - (J_{\eta} - J_{\zeta})\omega_{\eta}\omega_{\zeta} = B\frac{v}{R}\dot{\varphi}\sin\varphi - (B - A)\frac{v}{R}\dot{\varphi}\sin\varphi = A\frac{v}{R}\dot{\varphi}\sin\varphi \\ M_{\eta}^{(S)} &= J_{\eta}\dot{\omega}_{\eta} - (J_{\zeta} - J_{\xi})\omega_{\zeta}\omega_{\xi} = B\frac{v}{R}\dot{\varphi}\cos\varphi + (A - B)\frac{v}{R}\dot{\varphi}\cos\varphi = A\frac{v}{R}\dot{\varphi}\cos\varphi \\ M_{\zeta}^{(S)} &= J_{\zeta}\dot{\omega}_{\zeta} - (J_{\xi} - J_{\eta})\omega_{\xi}\omega_{\eta} = 0 \end{split}$$

4.5 Bestimmen Sie mithilfe der Ergebnisse aus Teilaufgabe 4.4 das Moment $\underline{\mathcal{M}}^{(S)} = \mathcal{M}_{\xi}^{(S)} \underline{e}_{\xi} + \mathcal{M}_{\eta}^{(S)} \underline{e}_{\eta} + \mathcal{M}_{\zeta}^{(S)} \underline{e}_{\zeta}$ im $\{\underline{e}_{x'},\underline{e}_{y'},\underline{e}_{z'}\}$ -Bezugssystem. Geben Sie das vom Schwungrad auf das Fahrzeug wirkende Kreiselmoment $\underline{\mathcal{M}}_T$ an und zeichnen Sie es in die Skizze ein.



$$\underline{\underline{\mathcal{M}}}^{(S)} = M_{\xi}^{(S)} \underline{\underline{e}}_{\xi} + M_{\eta}^{(S)} \underline{\underline{e}}_{\eta} + M_{\zeta}^{(S)} \underline{\underline{e}}_{\zeta}$$

$$\begin{split} & \underbrace{\boldsymbol{e}_{\boldsymbol{\xi}}} = \cos\varphi \underline{\boldsymbol{e}}_{x'} + \sin\varphi \underline{\boldsymbol{e}}_{y'} \\ & \underline{\boldsymbol{e}}_{\boldsymbol{\eta}} = -\sin\varphi \underline{\boldsymbol{e}}_{x'} + \cos\varphi \underline{\boldsymbol{e}}_{y'} \\ & \underline{\boldsymbol{e}}_{\boldsymbol{\zeta}} = \underline{\boldsymbol{e}}_{z'} \end{split}$$

$$\begin{split} \underline{\mathcal{M}}^{(S)} &= \left[M_{\xi} \cos \varphi - M_{\eta} \sin \varphi \right] \underline{e}_{x'} + \left[M_{\xi} \sin \varphi + M_{\eta} \cos \varphi \right] \underline{e}_{y'} + M_{\zeta} \underline{e}_{z'} \\ &= \left[A \frac{v}{R} \dot{\varphi} \sin \varphi \cos \varphi - A \frac{v}{R} \dot{\varphi} \sin \varphi \cos \varphi \right] \underline{e}_{x'} + \left[A \frac{v}{R} \dot{\varphi} \sin^2 \varphi + A \frac{v}{R} \dot{\varphi} \cos^2 \varphi \right] \underline{e}_{y'} \\ &= A \frac{v}{R} \dot{\varphi} \underline{e}_{y'} = A \Omega \dot{\varphi} \underline{e}_{y'} \end{split}$$

$$\underline{M}_{T} = -\underline{M}^{(S)} = -A\Omega\dot{\varphi}\underline{e}_{n'}$$