INSTITUT FÜR STOCHASTIK UNIVERSITÄT KARLSRUHE

Priv.-Doz. Dr. D. Kadelka

Klausur (Maschineningenieure)

Wahrscheinlichkeitstheorie und Statistik

vom 14.9.2009

Musterlösungen

Aufgabe 1:

Gegeben sei eine Urliste mit den Paaren $(x_1, y_1), \ldots, (x_{12}, y_{12})$

j	1	2	3	4	5	6	7	8	9	10	11	12
x_j	-0.8	0.1	0.9	2.1	3	4	4.8	6.1	7.2	8.1	9.2	10
y_i	8.6	6.5	7.3	7.8	5.9	2.3	-0.4	-0.8	-8.6	-0.3	-6.3	-8.1

a) Berechnen Sie die Stichprobenmittel \bar{x} , \bar{y} , die Stichproben-Standardabweichungen s_x , s_y und den empirischen Korrelationskoeffizienten r_{xy} .

Lösung: Direkt aus den Daten ergibt sich gemäß Definition 1.8 und Paragraph 1.5 unter Ausnützung der Beziehung

$$\sum_{j=1}^{n} (x_j - \bar{x}) \cdot (y_j - \bar{y}) = \sum_{j=1}^{n} x_j \cdot y_j - n \cdot \bar{x} \cdot \bar{y}$$

$$\bar{x} = 4.56$$
 $s_x = 3.616$ $\bar{y} = 1.16$ $s_y = 6.285$ $r_{xy} = -0.9193$

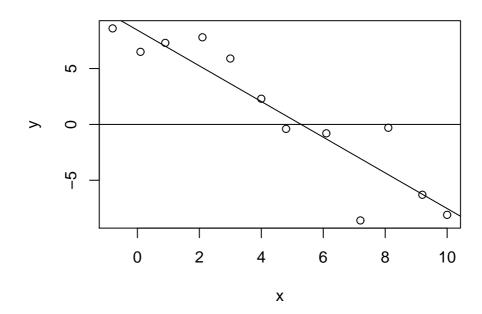
b) Bestimmen Sie die zugehörige Regressionsgerade $y = a^* + b^* \cdot x$ von y auf x.

Lösung: Nach Paragraph 1.5 ist $b^* = r_{xy} \cdot \frac{s_y}{s_x}$ und $a^* = \bar{y} - b^* \cdot \bar{x}$, also

$$b^* = -1.598$$

 $a^* = 8.44$

und die Regressionsgerade $y = 8.44 - 1.598 \cdot x$.



Punkte und Regressionsgerade $y = a^* + b^* \cdot x$

Für die Lösung der nächsten drei Aufgabenteile benötigen wir die aufsteigend sortierten y-Werte. Es ist

$$y_{()} = (-8.6, -8.1, -6.3, -0.8, -0.4, -0.3, 2.3, 5.9, 6.5, 7.3, 7.8, 8.6)$$

c) Berechnen Sie das 0.1-getrimmte Stichprobenmittel $\bar{y}_{0.1}$ von (y_1, \ldots, y_{12}) .

Lösung: Mit $k = [12 \cdot 0.1] = 1$ ergibt sich

$$\bar{y}_{0.1} = \frac{1}{12 - 2 \cdot 1} \cdot (y_{(2)} + \dots + y_{(11)}) = 1.39$$

d) Bestimmen Sie das Stichproben-0.2-Quantil $\tilde{y}_{0.2}$ von (y_1, \dots, y_{12}) . **Lösung:** Da $12 \cdot 0.2 = 2.4$ nicht ganzzahlig ist, ist mit k = [2.4] = 2

$$\tilde{y}_{0.2} = y_{(k+1)} = y_{(3)} = -6.3$$

e) Berechnen Sie den Quartilsabstand von (y_1, \ldots, y_{12}) .

Lösung: Da $0.25 \cdot 12 = 3$ und $0.75 \cdot 12 = 9$ beide ganzzahlig sind, ergibt sich mit $k_1 = 3$ und $k_2 = 9$

$$\tilde{y}_{0.25} = \frac{y_{(k_1)} + y_{(k_1+1)}}{2} = \frac{y_{(3)} + y_{(4)}}{2} = -3.55$$

$$\tilde{y}_{0.75} = \frac{y_{(k_2)} + y_{(k_2+1)}}{2} = \frac{y_{(9)} + y_{(10)}}{2} = 6.9$$

und damit der Quartilsabstand zu $\tilde{y}_{0.75} - \tilde{y}_{0.25} = 10.45$.

Aufgabe 2

Die gemeinsame Zähldichte $f_{X,Y}(i,j)$ zweier Zufallszahlen X und Y ist in der folgenden Tabelle gegeben.

i	-1	0	1	2
j				
0	$\frac{2}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$
1	$\frac{2}{20}$	0	$\frac{2}{20}$	$\frac{3}{20}$
2	$\frac{4}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{2}{20}$

So ist z.B. $f_{X,Y}(-1,0) = \frac{2}{20}$ und $f_{X,Y}(2,1) = \frac{3}{20}$.

a) Bestimmen Sie die Zähldichte f_X von X.

Lösung: Gemäß (6.4) erhält man die Zähldichte f_X von X als Spaltensumme der obigen Matrix. Es ist also

i	-1	0	1	2	
$f_X(i)$	$\frac{8}{20}$	$\frac{2}{20}$	$\frac{4}{20}$	$\frac{6}{20}$	

b) Berechnen Sie den Erwartungswert $\mathbb{E}(X)$ und die Varianz V(X) der Zufallsvariablen X. Lösung:

$$\mathbb{E}(X) = \sum_{i=-1}^{2} i \cdot f_X(i) = (-1) \cdot \frac{8}{20} + 0 \cdot \frac{2}{20} + 1 \cdot \frac{4}{20} + 2 \cdot \frac{6}{20} = \frac{8}{20} = 0.4$$

Mit $V(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2$ und

$$\mathbb{E}(X^2) = \sum_{i=-1}^{2} i^2 \cdot f_X(i) = (-1)^2 \cdot \frac{8}{20} + 0^2 \cdot \frac{2}{20} + 1^2 \cdot \frac{4}{20} + 2^2 \cdot \frac{6}{20} = \frac{36}{20} = 1.8$$

ergibt sich

$$V(X) = 1.8 - 0.4^2 = 1.64 .$$

c) Berechnen Sie die Kovarianz C(X,Y) von X und Y.

<u>Hinweis:</u> Berechnen Sie zuerst $\mathbb{E}(X \cdot Y)$.

Lösung: Wegen Satz 12.23 a) gilt $C(X,Y) = \mathbb{E}(X\cdot Y) - \mathbb{E}X\cdot \mathbb{E}Y$ und wegen Satz 12.8

$$\mathbb{E}(X \cdot Y) = \sum_{i=-1}^{2} \sum_{j=0}^{2} i \cdot j \cdot f_{X,Y}(i,j)$$

$$= (-1) \cdot 1 \cdot \frac{2}{20} + (-1) \cdot 2 \cdot \frac{4}{20} + 1 \cdot 1 \cdot \frac{2}{20} + 1 \cdot 2 \cdot \frac{1}{20} + 2 \cdot 1 \cdot \frac{3}{20} + 2 \cdot 2 \cdot \frac{2}{20}$$

$$= \frac{8}{20} = \frac{2}{5}$$

Aus der Tabelle ergibt sich noch $f_Y(0) = \frac{5}{20}, \ f_Y(1) = \frac{7}{20}$ und $f_Y(2) = \frac{8}{20}$ und damit

$$\mathbb{E}Y = 1 \cdot \frac{7}{20} + 2 \cdot \frac{8}{20} = \frac{23}{20} \;,$$

insgesamt

$$C(X,Y) = \mathbb{E}(X \cdot Y) - \mathbb{E}X \cdot \mathbb{E}Y = \frac{2}{5} - \frac{2}{5} \cdot \frac{23}{20} = -\frac{6}{100} = -0.06$$

d) Bestimmen Sie $\mathbb{P}(Y=0\mid X=1),\,\mathbb{P}(Y=1\mid X=1)$ und $\mathbb{P}(Y=2\mid X=1).$ Lösung: Nach Definition und wegen a) ist

$$\mathbb{P}(Y=j\mid X=1) = \frac{\mathbb{P}(X=1,Y=j)}{\mathbb{P}(X=1)} = \frac{f_{X,Y}(1,j)}{f_X(1)} = 5 \cdot f_{X,Y}(1,j), \qquad j=0,1,2.$$

j	0	1	2
$f_{Y X}(1,j)$	$\frac{5}{20}$	$\frac{10}{20}$	$\frac{5}{20}$

e) Berechnen Sie $\mathbb{P}(Y \ge 1 \mid X = 1)$.

Lösung: Mit d) erhält man

$$\mathbb{P}(Y \ge 1 \mid X = 1) = \mathbb{P}(Y = 1 \mid X = 1) + \mathbb{P}(Y = 2 \mid X = 1)$$
$$= \frac{10}{20} + \frac{5}{20} = \frac{15}{20} = \frac{3}{4}.$$

Aufgabe 3

Es sei X eine normalverteilte Zufallsvariable mit dem Erwartungswert -3 und der Varianz 9. Weiter sei Y eine normalverteilte Zufallsvariable mit dem Erwartungswert 2 und der Varianz 16. Die Zufallsvariablen X und Y seien stochastisch unabhängig.

a) Setzen Sie die richtigen Parameter ein.

$$X$$
 besitzt die Verteilung $\mathcal{N}\Big(\qquad,\qquad\Big).$

Lösung: Da für eine $\mathcal{N}(\mu, \sigma^2)$ -verteilte Zufallsvariable X stets $\mathbb{E}X = \mu$ und $V(X) = \sigma^2$ gilt, ist hier

$$X \sim \mathcal{N}(-3,9).$$

b) Berechnen Sie den Erwartungswert und die Varianz der Zufallsvariablen $Z:=\frac{1}{3}X-\frac{1}{3}$ und $W:=\frac{X-Y}{5}$.

Lösung: Wie in a) erhält man $Y \sim \mathcal{N}(2, 16)$. Wegen Satz 12.6 und Satz 12.11 und wegen der Unabhängigkeit von X und Y gilt:

$$\mathbb{E}Z = \frac{1}{3}\mathbb{E}X - \frac{1}{3} = \frac{1}{3} \cdot (-3) - \frac{1}{3} = -\frac{4}{3},$$

$$V(Z) = \frac{1}{3^2}V(X) = \frac{1}{9} \cdot 9 = 1,$$

$$\mathbb{E}W = \frac{\mathbb{E}X - \mathbb{E}Y}{5} = \frac{-3 - 2}{5} = -1,$$

$$V(W) = \frac{1}{5^2}V(X + Y) = \frac{1}{25}(V(X) + V(Y)) = \frac{25}{25} = 1.$$

c) Berechnen Sie die Kovarianz C(W,Z) der Zufallsvariablen W und Z. **Lösung:** Wegen Satz 12.23 und der Unabhängigkeit von X und Y, also C(X,Y)=0, gilt

$$C(W,Z) = C\left(\frac{1}{5} \cdot (X - Y), \frac{1}{3}X - \frac{1}{3}\right)$$

$$= \frac{1}{5} \cdot \frac{1}{3} \cdot C(X - Y, X) = \frac{1}{15} \cdot [C(X, X) - C(Y, X)]$$

$$= \frac{V(X)}{15} = \frac{9}{15} = 0.6.$$

d) Bestimmen Sie $\mathbb{P}(Y > -4)$.

Lösung: Wegen $Y \sim \mathcal{N}(\mu, \sigma^2)$ mit $\mu := \mathbb{E}Y = 2$ und $\sigma^2 := V(Y) = 16$ und (9.6) gilt

$$\mathbb{P}(Y > -4) = 1 - \mathbb{P}(Y \le -4) = 1 - \Phi_{\mu,\sigma^2}(-4) = 1 - \Phi\left(\frac{-4 - \mu}{\sigma}\right)$$
$$= 1 - \Phi\left(\frac{-4 - 2}{4}\right) = 1 - \Phi(-1.5) = \Phi(1.5).$$

Wegen $\Phi(1.5) = 0.9332$ (aus Tabelle A.1) folgt

$$\mathbb{P}(Y > -4) = 0.9332.$$

e) Bestimmen Sie das 0.95-Quantil $q_{0.95}$ der Zufallsvariablen Y. Lösung: $q_{0.95}$ ist die Lösung q der Gleichung

$$F_Y(q) = \Phi_{2,16}(q) = \Phi\left(\frac{q-2}{4}\right) = 0.95.$$

Wegen $\Phi(1.6449) = 0.95$ (Skript 12.20 d)) gilt also

$$\frac{q-2}{4} = 1.6449$$

und damit

$$q_{0.95} = q = 1.6449 \cdot 4 + 2 = 8.58.$$

Aufgabe 4

Eine Serienschaltung bestehe aus vier elektrischen Elementen. Die Lebensdauern X_1, X_2, X_3, X_4 der vier Elemente seien stochastisch unabhängig und jeweils Exp(1) verteilt.

a) Die Gesamtlebensdauer der Serienschaltung Y ist definiert durch

$$Y := \min\{X_1, X_2, X_3, X_4\}.$$

Bestimmen Sie die Verteilungsfunktion F_Y von Y. Welche Verteilung besitzt Y? **Lösung:** Wegen der stochastischen Unabhängigkeit von X_1 , X_2 , X_3 und X_4 und wegen $X_1, X_2, X_3, X_4 \sim Exp(1)$ gilt für $t \geq 0$ (vergl. Skript Satz 11.18):

$$F_Y(t) = 1 - (1 - F_{X_1}(t)) \cdot (1 - F_{X_2}(t)) \cdot (1 - F_{X_3}(t)) \cdot (1 - F_{X_4}(t))$$

= 1 - (1 - (1 - e^{-t}))⁴ = 1 - (e^{-t})⁴ = 1 - e^{-4t}

und für t < 0 gilt dann $F_Y(t) = 0$. Insbesondere gilt $Y \sim Exp(4)$.

b) Berechnen Sie $\mathbb{P}(Y > 2 \mid X_1 > 1)$.

Lösung: Aus Definition 10.5 mit

$${X_1 > 2} \cap {X_1 > 1} = {X_1 > 2}$$

folgt

$$\mathbb{P}(Y > 2 \mid X_1 > 1) = \frac{\mathbb{P}(Y > 2, X_1 > 1)}{\mathbb{P}(X_1 > 1)} \\
= \frac{\mathbb{P}(\min\{X_1, X_2, X_3, X_4\} > 2, X_1 > 1)}{\mathbb{P}(X_1 > 1)} \\
= \frac{\mathbb{P}(X_1 > 2, X_2 > 2, X_3 > 2, X_4 > 2, X_1 > 1)}{\mathbb{P}(X_1 > 1)} \\
= \frac{\mathbb{P}(X_1 > 2, X_2 > 2, X_3 > 2, X_4 > 2)}{\mathbb{P}(X_1 > 1)} \\
= \frac{\mathbb{P}(Y > 2)}{\mathbb{P}(X_1 > 1)} = \frac{e^{-8}}{e^{-1}} = e^{-7} = 9.12 \cdot 10^{-4}.$$

Sei in den folgenden drei Aufgabenteilen die Zufallsvariable $Z \sim Exp(5)$.

c) Bestimmen Sie den Erwartungswert $\mathbb{E} Z$ und die Varianz V(Z) von Z.

Lösung: Da $Z \sim Exp(5)$ ist, gilt

$$\mathbb{E}Z = \frac{1}{5}$$

und

$$V(Z) = \frac{1}{25}$$

nach den Tabellen auf S. 124 und S. 128.

d) Berechnen Sie $\mathbb{P}(Z > 0.3)$.

Lösung: Mit a) erhält man

$$\mathbb{P}(Z > 0.3) = 1 - F_Z(0.3) = e^{-5.0.3} = e^{-1.5} = 0.2231.$$

e) Geben Sie den größten Wert t an, für welche die Wahrscheinlichkeit $\mathbb{P}(Z>t)\geq 0.7$ ist.

Lösung: Aus dem Ansatz

$$\mathbb{P}(Z > t) \ge 0.7 \iff e^{-5t} \ge 0.7$$

$$\iff -5t \ge \log(0.7)$$

$$\iff t \le -\log(0.7)/5 = 0.0713$$

erhält man t = 0.0713.

Eine Firma kauft einen Elektromotor, der $t_0 = 1$ Jahr betrieben werden soll. Hat der Elektromotor in diesem Jahr einen Defekt, dann wird er weder repariert noch ersetzt. Bei einem Defekt zum Zeitpunkt t (mit $0 \le t \le 1$) entsteht ein Verlust (in Millionen Euro) von

$$c(t) = e - e^{t^3}.$$

Für diesen Verlust kommt im ersten Halbjahr der Hersteller auf, danach die Firma. (Ist t > 1, so entsteht kein Verlust.) Aus Erfahrung weiß man, dass die zufällige Lebensdauer T des Elektromotors (in Jahren) die Verteilungsfunktion

$$F_T(t) = \begin{cases} 0, & t \le 0, \\ 1 - e^{-t^3}, & t > 0 \end{cases}$$

besitzt.

- a) Bestimmen Sie den Median von F_T .
- b) Mit welcher Wahrscheinlichkeit muss der Hersteller für den Verlust aufkommen?
- c) Berechnen Sie die für den Hersteller zu erwartenden Kosten aufgrund eines Defekts des Elektromotors. <u>Hinweis:</u> T hat die Dichte $f_T(t) = 3t^2e^{-t^3}$, t > 0 (kein Nachweis nötig). Nützen Sie aus, dass $\int_0^{1/2} f_T(x) dx = F_T(\frac{1}{2})$.
- d) Berechnen Sie die Wahrscheinlichkeit $\mathbb{P}(\frac{1}{2} < t \leq 1)$, dass die Firma für einen Verlust aufkommen muss.
- e) Berechnen Sie $G(t) := \mathbb{P}(T \le t \mid \frac{1}{2} < T \le 1)$ für $t \ge 0$.

Lösung:

- a) Den Median $t_{1/2}$ erhält man als Lösung von $F_T(t) = 1 e^{-t^3} = \frac{1}{2}$, also $e^{-t^3} = \frac{1}{2} \iff -t^3 = \ln(\frac{1}{2}) = -\ln(2)$. Damit gilt $t_{1/2} = \sqrt[3]{\ln(2)} = 0.8850$.
- b) Der Hersteller muss mit der Wahrscheinlichkeit

$$\mathbb{P}\left(0 \le T \le \frac{1}{2}\right) = \mathbb{P}\left(T \le \frac{1}{2}\right) = F_T\left(\frac{1}{2}\right) = 1 - e^{-\frac{1}{8}} = 0.1175$$

für den Verlust aufkommen.

c) Der Hersteller hat nur dann die Kosten zu tragen, wenn $0 < T < \frac{1}{2}$. Die Kosten sind daher

$$\int_0^{1/2} c(t) \cdot f_T(t) dt = \int_0^{1/2} (e - e^{t^3}) \cdot f_T(t) dt = e \cdot \int_0^{1/2} f_T(t) dt - \int_0^{1/2} e^{t^3} \cdot 3t^2 e^{-t^3} dt$$
$$= e \cdot F_T(1/2) - \int_0^{1/2} 3t^2 dt = e \cdot (1 - e^{-(1/2)^3}) - t^3 \Big|_0^{1/2} = e - e^{7/8} - \frac{1}{8} = 0.1944$$

d)
$$\mathbb{P}(\frac{1}{2} < t \le 1) = F_T(1) - F_T(\frac{1}{2}) = 1 - e^{-1} - 1 + e^{-\frac{1}{8}} = e^{-\frac{1}{8}} - e^{-1} = 0.5146.$$

e) Es gilt $G(t) = \frac{\mathbb{P}(T \le t, \frac{1}{2} < T \le 1)}{\mathbb{P}(\frac{1}{2} < T \le 1)}$. Für $0 \le t \le \frac{1}{2}$ gilt $\mathbb{P}(T \le t, \frac{1}{2} < T \le 1) = 0$ wegen $\{T \le t\} \cap \{\frac{1}{2} < T \le 1\} = \emptyset$, also auch G(t) = 0. Für $t \ge 1$ gilt dagegen G(t) = 1 wegen $\{T \le t\} \cap \{\frac{1}{2} < T \le 1\} = \{\frac{1}{2} < T \le 1\}$. Für $\frac{1}{2} < t \le 1$ erhalten wir wegen $\{T \le t\} \cap \{\frac{1}{2} < T \le 1\} = \{\frac{1}{2} < T \le t\}$

$$G(t) = \frac{\mathbb{P}(\frac{1}{2} < T \le t)}{\mathbb{P}(\frac{1}{2} < T \le 1)} = \frac{F_T(t) - F_T(1/2)}{F_T(1) - F_T(1/2)} = \frac{1 - e^{-t^3} - 1 + e^{-(1/2)^3}}{e^{-\frac{1}{8}} - e^{-1}} = \frac{e^{-(1/2)^3} - e^{-t^3}}{e^{-\frac{1}{8}} - e^{-1}}$$

Aufgabe 6

Ein Gerät habe die zufällige Lebensdauer X (gemessen in vollen Monaten) mit der negativen Binomialverteilung $Nb\left(2,\frac{1}{1+\vartheta}\right)$, wobei der Parameter $\vartheta>0$ unbekannt ist. Diese Verteilung besitzt die Zähldichte

$$f_{\vartheta}(k) = \frac{(k+2)(k+1)}{2} \cdot \left(\frac{1}{1+\vartheta}\right)^2 \cdot \left(\frac{\vartheta}{1+\vartheta}\right)^k, \ k = 0, 1, \dots$$

 ϑ soll aufgrund einer (unabhängigen) Stichprobe $x = (x_1, \dots, x_n)$ mit $x_i \ge 0$ geschätzt werden, wobei $\bar{x} > 0$ vorausgesetzt wird.

- a) Bestimmen Sie Likelihood-Funktion und die Loglikelihood-Funktion zur Stichprobe $x = (x_1, \dots, x_n)$.
- b) Zeigen Sie, dass

$$T_n(x) = \bar{x}/2$$

ein Maximum-Likelihood-Schätzer für ϑ ist.

- c) Zeigen Sie, dass $\mathbb{E}_{\vartheta}(X) = 2 \cdot \vartheta$ gilt.
- d) Bestimmen Sie die Varianz $V_{\vartheta}(X)$ von X.

Hinweis: Es genügt bei c) und d) geeignete Tabellen über Erwartungswerte und Varianzen zu verwenden. Eine direkte Berechnung gemäß Def. 12.2 und Satz 12.8 im Skriptum wird nicht verlangt.

- e) Ist $T_n(x)$ ein erwartungstreuer Schätzer für ϑ ?
- f) Ist die Schätzfolge $T_n(x_1,...,x_n)$ konsistent für ϑ ?

Lösung:

a) Nach Definition gilt

$$L_x(\vartheta) = f_{\vartheta}(x_1) \cdot \dots \cdot f_{\vartheta}(x_n) = \prod_{i=1}^n \left[\frac{(x_i + 2)(x_i + 1)}{2} \cdot \left(\frac{1}{1 + \vartheta}\right)^2 \cdot \left(\frac{\vartheta}{1 + \vartheta}\right)^{x_i} \right]$$
$$= \prod_{i=1}^n \frac{(x_i + 2)(x_i + 1)}{2} \cdot \left(\frac{1}{1 + \vartheta}\right)^{2n} \cdot \left(\frac{\vartheta}{1 + \vartheta}\right)^{x_1 + \dots + x_n}$$

und wegen

$$\ln f_{\vartheta}(k) = \ln \frac{(k+2)(k+1)}{2} - 2 \cdot \ln(1+\vartheta) + k \cdot \ln(\vartheta) - k \cdot \ln(1+\vartheta)$$
$$= \ln \frac{(k+2)(k+1)}{2} - k \cdot \ln(\vartheta) - (2+k) \cdot \ln(1+\vartheta)$$

oder direkt durch Logarithmieren von $L_x(\vartheta)$

$$M_x(\vartheta) = \sum_{i=1}^n \ln f_{\vartheta}(x_i) = \sum_{i=1}^n \left(\ln \frac{(x_i + 2)(x_i + 1)}{2} - x_i \cdot \ln(\vartheta) - (2 + x_i) \cdot \ln(1 + \vartheta) \right)$$
$$= \sum_{i=1}^n \ln \frac{(x_i + 2)(x_i + 1)}{2} + \ln(\vartheta) \cdot \sum_{i=1}^n x_i - \ln(1 + \vartheta) \cdot \sum_{i=1}^n (2 + x_i)$$

b) Zur Berechnung des Maximum-Likelihood-Schätzers verwenden wir das Schema auf S.164 im Skriptum.

$$M'_{x}(\vartheta) = \frac{1}{\vartheta} \cdot \sum_{i=1}^{n} x_{i} - \frac{1}{1+\vartheta} \cdot \sum_{i=1}^{n} (2+x_{i}) = \frac{1}{\vartheta(1+\vartheta)} \cdot \left[(1+\vartheta) \cdot \sum_{i=1}^{n} x_{i} - \vartheta \cdot \sum_{i=1}^{n} (2+x_{i}) \right]$$
$$\frac{1}{\vartheta(1+\vartheta)} \cdot \left[\sum_{i=1}^{n} x_{i} - \vartheta \cdot \sum_{i=1}^{n} 2 \right] = \frac{1}{\vartheta(1+\vartheta)} \cdot \left[\sum_{i=1}^{n} x_{i} - 2n \cdot \vartheta \right]$$

Da $1/(\vartheta(1+\vartheta))$ positiv ist, gilt

$$M'_x(\vartheta) = 0 \iff \sum_{i=1}^n x_i = 2n \cdot \vartheta \iff \vartheta = \frac{1}{2n} \sum_{i=1}^n x_i = \frac{\bar{x}}{2}.$$

 M_x ist also unterhalb von $\bar{x}/2$ steigend und danach fallend, also $T_n(x) = \bar{x}/2$ die (einzige) Maximumstelle von $\vartheta \to M_x(\vartheta)$ und damit $T_n(x)$ der gesuchte Maximum-Likelihood-Schätzer.

c) Wegen $X \sim Nb\left(2, \frac{1}{1+\vartheta}\right)$ und der Tabelle auf S. 124 gilt

$$\mathbb{E}_{\vartheta}(X) = 2 \cdot \left(1 - \frac{1}{1 + \vartheta}\right) / \frac{1}{1 + \vartheta} = 2 \cdot \vartheta.$$

d) Analog ergibt sich mit der Tabelle auf S. 128

$$V_{\vartheta}(X) = 2 \cdot \left(1 - \frac{1}{1 + \vartheta}\right) / \left(\frac{1}{1 + \vartheta}\right)^2 = 2 \cdot \vartheta \cdot (1 + \vartheta).$$

e) Wegen Satz 17.13 und wegen d) ist \bar{x} ein erwartungstreuer Schätzer für $\gamma(\vartheta) = \mathbb{E}_{\vartheta}(X) = 2 \cdot \vartheta$, d.h. es gilt $\mathbb{E}\bar{X} = 2 \cdot \vartheta$. Damit gilt dann aber auch

$$\mathbb{E}_{\vartheta} T_n(X) = \mathbb{E}_{\vartheta} \bar{X}/2 = \vartheta$$

für alle $\vartheta > 0$. Damit ist $T_n(x)$ ein erwartungstreuer Schätzer für ϑ .

f) Wegen Satz 17.19 a) ist \bar{x} ein konsistenter Schätzer für $\gamma(\vartheta)=2\cdot\vartheta,$ d.h. es gilt nach Definition 17.17

$$\lim_{n \to \infty} \mathbb{P}_{\vartheta} \left(\left| \frac{1}{n} \sum_{i=1}^{n} X_{i} - 2 \cdot \vartheta \right| \ge \epsilon \right)$$

$$\stackrel{\text{Division durch 2}}{=} \lim_{n \to \infty} \mathbb{P}_{\vartheta} (|T_{n}(X_{1}, \dots, X_{n}) - \vartheta| \ge \epsilon/2) = 0$$

für alle $\epsilon > 0$ und alle $\vartheta > 0$. Die letzte Gleichung bedeutet, dass die Schätzfolge $T_n(x_1, ..., x_n)$ konsistent für ϑ ist. Dass in dieser Gleichung $\epsilon/2$ und nicht ϵ steht, ist ohne Bedeutung wenn diese Gleichheit für alle $\epsilon > 0$ verlangt wird.

Aufgabe 7

Eine Maschine besteht aus drei Teilen T_1 , T_2 und T_3 . Jedes Teil kann von guter, befriedigender oder schlechter Qualität sein. Aufgrund von Produktionsschwankungen ist die Qualität von Teil T_i eine Zufallsvariable X_i , die mit Wahrscheinlichkeit p=0.8 den Wert "gut" (=g), mit Wahrscheinlichkeit q=0.15 den Wert "befriedigend" (=b) und ansonsten den Wert "schlecht" (=s) annimmt. Die Zufallsvariablen X_1, X_2, X_3 seien stochastisch unabhängig.

- a) Bestimmen Sie die Wahrscheinlichkeit, dass Teil T_1 (bzw. T_2, T_3) von schlechter Qualität ist.
- b) Welche Verteilung hat N, die zufällige Anzahl der Teile, die von schlechter Qualität sind?
- c) Die Maschine ist unbrauchbar, wenn mindestens eines der Teile T_1, T_2, T_3 von schlechter Qualität ist. Bestimmen Sie die Wahrscheinlichkeit, dass die Maschine unbrauchbar ist.

Lösung:

a) Gesucht ist $\mathbb{P}(X_1 = s)$. Weil X_1 nur die Werte g, b und s annimmt, muss

$$1 = \mathbb{P}(X_1 = g) + \mathbb{P}(X_1 = b) + \mathbb{P}(X_1 = s) = 0.8 + 0.15 + \mathbb{P}(X_1 = s)$$

gelten, also $\mathbb{P}(X_1 = s) = 0.05$.

- b) Es liegt hier ein Treffer-Niete Experiment vor, wobei ein Treffer dann vorliegt, wenn ein Teil schlecht ist. Wegen a) ist die Trefferwahrscheinlichkeit 0.05. Entsprechend den drei Teilen wird dieses Experiment dreimal durchgeführt. N kann als die zufällige Anzahl der Treffer interpretiert werden, ist also Bin(3, 0.05)-verteilt.
- c) Die Maschine ist unbrauchbar, wenn mindestens ein Teil schlecht ist, also wenn $N \geq 1$. Wegen $N \sim Bin(3,0.05)$ gilt

$$\mathbb{P}(\text{Maschine unbrauchbar}) = \mathbb{P}(N \ge 1) = 1 - \mathbb{P}(N = 0)$$
$$= 1 - \binom{3}{0} \cdot 0.05^{0} \cdot 0.95^{3} = 1 - 0.95^{3} = 0.142625$$