

Name:		
Vorname:		
MatrNr.:		

Klausur zum Fach

WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

für Studierende des Maschinenbaus

Datum: 12. Juli 2011

Dauer: 180 Minuten

Diese Klausur hat bestanden, wer mindestens 30 Punkte erreicht.

L		Au	tgab	e 1			Aufgabe 2				Aufgabe 3				Aufgabe 4					
	a	b	С	d	e	a	b	c	d	е	a	b	С	d	е	a	b	c	d	e

	Aufg	abe 5	5		Aufg	abe 6	j	A	7	\sum		
a	b	c	d	a	b	c	d	a	b	С	d	

Aufgabe 1 (12 Punkte)

Gegeben sei eine Urliste mit den Paaren $(x_1, y_1), \ldots, (x_{12}, y_{12})$

j	1	2	3	4	5	6	7	8	9	10	11	12
x_j	0.5	0.7	1.7	1.7	2.1	2.2	2.2	2.4	2.9	3.1	3.4	3.8
y_{j}	0.1	0.4	0.9	1.2	1.4	1.7	2.0	2.1	2.5	2.7	2.5	5.4

a) Berechnen Sie die Stichprobenmittel \bar{x} , \bar{y} , die Stichproben-Standardabweichungen s_x , s_y und den empirischen Korrelationskoeffizienten r_{xy} .

Hinweis:

$$\sum_{j=1}^{12} x_j = 26.7, \ \sum_{j=1}^{12} x_j^2 = 70.39, \ \sum_{j=1}^{12} y_j = 22.9, \ \sum_{j=1}^{12} y_j^2 = 64.63, \ \sum_{j=1}^{12} x_j \cdot y_j = 64.66.$$

- b) Bestimmen Sie die zugehörige Regressionsgerade $y = a^* + b^* \cdot x$ von y auf x.
- c) Berechnen Sie das 0.15-getrimmte Stichprobenmittel $\bar{y}_{0.15}$ von (y_1, \ldots, y_{12}) .
- d) Bestimmen Sie das Stichproben-0.3-Quantil $\tilde{y}_{0.3}$ von (y_1, \ldots, y_{12}) .
- e) Berechnen Sie den Quartilsabstand von (y_1, \ldots, y_{12}) .

Lösung:

a) Direkt aus den Daten ergibt sich gemäß Definition 1.8 und Paragraph 1.5 unter Ausnützung der Beziehung

$$\sum_{j=1}^{n} (x_j - \bar{x}) \cdot (y_j - \bar{y}) = \sum_{j=1}^{n} x_j \cdot y_j - n \cdot \bar{x} \cdot \bar{y}$$

$$\bar{x} = 2.23$$
 $s_x = 0.999$ $\bar{y} = 1.91$ $s_y = 1.379$ $r_{xy} = 0.904$

b) Nach Paragraph 1.5 ist $b^* = r_{xy} \cdot \frac{s_y}{s_x}$ und $a^* = \bar{y} - b^* \cdot \bar{x}$, also

$$b^* = 1.248$$

 $a^* = -0.868$

und die Regressionsgerade $y = -0.868 + 1.248 \cdot x$.

c) Für die Lösung der nächsten drei Aufgabenteile benötigen wir die aufsteigend sortierten y-Werte. Es ist

$$y_{()} = (0.1, 0.4, 0.9, 1.2, 1.4, 1.7, 2.0, 2.1, 2.5, 2.5, 2.7, 5.4)$$

Mit $k = [12 \cdot 0.15] = 1$ ergibt sich

$$\bar{y}_{0.15} = \frac{1}{12 - 2 \cdot 1} \cdot (y_{(2)} + \dots + y_{(11)}) = 1.74$$

2

d) Da $12\cdot 0.3=3.6$ nicht ganzzahlig ist, ist mit k=[3.6]=3

$$\tilde{y}_{0.3} = y_{(k+1)} = y_{(4)} = 1.2$$

e) Da $0.25\cdot 12=3$ und $0.75\cdot 12=9$ beide ganzzahlig sind, ergibt sich mit $k_1=3$ und $k_2=9$

$$\tilde{y}_{0.25} = \frac{y_{(k_1)} + y_{(k_1+1)}}{2} = \frac{y_{(3)} + y_{(4)}}{2} = 1.05$$

$$\tilde{y}_{0.75} = \frac{y_{(k_2)} + y_{(k_2+1)}}{2} = \frac{y_{(9)} + y_{(10)}}{2} = 2.5$$

und damit der Quartilsabstand zu $\tilde{y}_{0.75} - \tilde{y}_{0.25} = 1.45.$

Aufgabe 2 (10 Punkte)

Die Funktion f sei in Abhängigkeit des Parameters c > -1 gegeben durch

$$f(x) = \begin{cases} x^c, & \text{falls } 0 < x \le 1, \\ 0, & \text{sonst.} \end{cases}$$

- a) Zeigen Sie, dass die Funktion f nur für c=0 eine Dichte einer Zufallsvariablen X ist.
- b) Die Zufallsvariable X habe die Dichte f aus Teilaufgabe a). Bestimmen Sie die Verteilungsfunktion F_X der Zufallsvariablen X. Wie nennt man die Verteilung?
- c) Betrachten Sie die Zufallsvariable $Y := 2 \cdot X 1$. Geben Sie die Verteilung F_Y von Y an und bestimmen Sie den Erwartungswert $\mathbb{E}(Y)$.
- d) Bestimmen Sie das zweite Moment $\mathbb{E}(Y^2)$ und die Varianz V(Y) von Y.
- e) Bestimmen Sie das erste Quartil der Verteilungsfunktion F_X .

Lösung:

a) Die Abbildung f ist für alle c > -1 und alle $x \in \mathbb{R}$ größer gleich 0. Weiter ist

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{1} x^{c} \, dx = \frac{1}{c+1} x^{c+1} \Big|_{0}^{1} = \frac{1}{c+1} \stackrel{!}{=} 1$$

also muss c = 0 sein.

b) Die Verteilungsfunktion lautet für $t \in [0, 1]$

$$F_X(t) = \int_{-\infty}^t f(x) \, dx = \int_0^t 1 \, dx = t$$

und $F_X(t) = 0$ für t < 0 und $F_x(t) = 1$ für t > 1. Es handelt sich also um die Gleichverteilung $\mathcal{U}(0,1]$.

c) Die Zufallsvariable Y besitzt die Verteilung $\mathcal{U}(-1,1)$. Es gilt

$$\mathbb{E}(Y) = 2\mathbb{E}(X) - 1 = 0.$$

d) Es gilt

$$\mathbb{E}(Y^2) = \int_{-1}^{1} \frac{1}{2} \cdot x^2 \, dx = \frac{1}{6} \cdot x^3 \Big|_{-1}^{1} = \frac{1}{3}.$$

und damit

$$V(Y) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2 = \frac{1}{3}.$$

4

e) Das erste Quartil $u_{0.25}$ der Gleichverteilung $\mathcal{U}(0,1]$ liegt bei $u_{0.25}=0.25$.

Aufgabe 3 (12 Punkte)

Mit einer Maschine zur Herstellung von Plastikflaschen werden n>0 grüne und m>0 schwarze Flaschen produziert. Die Qualitätsprüfung erfolgt durch Laserabtastung. Eine Flasche wird (unabhängig von den anderen) aussortiert, wenn "zu große"Abweichungen von der eingestellten Norm festgestellt werden; dies geschehe mit Wahrscheinlichkeit p=0.05. Sei X die zufällige Anzahl aussortierter grüner Flaschen und Y die zufällige Anzahl aussortierter schwarzer Flaschen.

- a) Geben Sie die Wahrscheinlichkeitsverteilungen von X und Y an.
- b) In einem Testlauf werden n=10 grüne Flaschen hergestellt. Berechnen Sie den Erwartungswert $\mathbb{E}(X)$, die Varianz V(X) und $\mathbb{P}(X>1)$.
- c) Die Zufallsvariablen X und Y seien stochastisch unabhängig. Welche Verteilung hat die Gesamtanzahl Z := X + Y der aussortierten Flaschen, wenn n = 10 grüne und m = 8 schwarze Flaschen produziert werden? Berechnen Sie die Wahrscheinlichkeit, dass höchstens 2 Flaschen fehlerhaft sind.
- d) Bestimmen Sie in der Situation von Teilaufgabe c) $\mathbb{P}(Z > 2|Y = 1)$.
- e) Durch eine eingebaute Fehlerkorrektur gelte für die Fehlerwahrscheinlichkeit $p_n := \frac{\lambda}{n}$ mit einem $\lambda > 0$. Welche Verteilung hat die Zufallsvariable X für $n \to \infty$?

Lösung:

a) Es gilt (Treffer-Niete Experiment)

$$X \sim \text{Bin}(n, p)$$
 und $Y \sim \text{Bin}(m, p)$.

b) Mit n = 10 gilt

$$\mathbb{E}(X) = n \cdot p = 0.5 \text{ und } V(X) = n \cdot p \cdot (1 - p) = 0.475.$$

Weiter ist

$$\mathbb{P}(X > 1) = 1 - \mathbb{P}(X \le 1) = 1 - \left[\binom{10}{0} 0.05^0 (0.95)^{10} + \binom{10}{1} (0.05)(0.95)^9 \right] \approx 0.086.$$

c) Mit der Faltungsformel für die Binomialverteilung hat Z die Verteilung Bin(18, p).

$$\mathbb{P}(Z \le 2) = \sum_{k=0}^{2} {18 \choose k} 0.05^{k} 0.95^{18-k} \approx 0.942.$$

d) Wegen der stochastischen Unabhängigkeit von X und Y gilt

$$\mathbb{P}(Z > 2|Y = 1) = \frac{\mathbb{P}(Z > 2, Y = 1)}{\mathbb{P}(Y = 1)} \\
= \frac{\mathbb{P}(X + Y > 2, Y = 1)}{\mathbb{P}(Y = 1)} \\
= \frac{\mathbb{P}(X > 1, Y = 1)}{\mathbb{P}(Y = 1)} \\
= \mathbb{P}(X > 1) \approx 0.086.$$

e) Die Zufallsvariable X hat in diesem Fall eine Poisson-Verteilung mit Parameter λ .

Aufgabe 4 (12 Punkte)

Es seien X eine Zufallsvariable mit Werten in $\{0,1\}$ und Y eine Zufallsvariable mit Werten in $\{0,1,2\}$. Die folgende Tabelle gibt die gemeinsame Verteilung $\mathbb{P}(X=i,Y=j)$ des Zufallsvektors (X,Y) für die Werte i=1,2 und j=0,1,2 an.

	j = 0	j = 1	j=2
i = 0	$\frac{1}{3}$	0	$\frac{1}{6}$
i = 1	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- a) Berechnen Sie die Randverteilung von Y, d.h. $\mathbb{P}(Y=0)$, $\mathbb{P}(Y=1)$ und $\mathbb{P}(Y=c)$, und den Erwartungswert $\mathbb{E}Y$.
- b) Berechnen Sie die Wahrscheinlichkeit $\mathbb{P}(X = 0, Y > 0)$.
- c) Berechnen Sie die bedingte Wahrscheinlichkeit $\mathbb{P}(X=1|Y>0)$.
- d) Es sei $Z := X \cdot Y$. Berechnen Sie den Erwartungswert $\mathbb{E}Z$, das zweite Moment $\mathbb{E}Z^2$ und die Varianz V(Z).
- e) Sind X und Y unabhängig? Begründen Sie Ihre Antwort!

Lösung:

a) Die Randverteilung von Y berechnet sich durch

$$\mathbb{P}(Y=0) = \mathbb{P}(X=0, Y=0) + \mathbb{P}(X=1, Y=0) = \frac{1}{3} + \frac{1}{6} = \frac{1}{2},$$

$$\mathbb{P}(Y=1) = \mathbb{P}(X=0, Y=1) + \mathbb{P}(X=1, Y=1) = 0 + \frac{1}{6} = \frac{1}{6},$$

$$\mathbb{P}(Y=2) = \mathbb{P}(X=0, Y=2) + \mathbb{P}(X=1, Y=2) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}.$$

Der Erwartungswert ist gegeben durch

$$\mathbb{E}(Y) = 1 \cdot \mathbb{P}(Y = 1) + 2 \cdot \mathbb{P}(Y = 2) = \frac{1}{6} + \frac{2}{3} = \frac{5}{6}.$$

b) Es gilt

$$\mathbb{P}(X=0,Y>0) = \mathbb{P}(X=0,Y=1) + \mathbb{P}(X=0,Y=2) = \frac{1}{6}.$$

c) Weiter gilt

$$\mathbb{P}(X=1|Y>0) = \frac{\mathbb{P}(X=1,Y>0)}{\mathbb{P}(Y>0)} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}.$$

6

d) Es gilt

$$\mathbb{E}(Z) = \mathbb{E}(X \cdot Y) = \sum_{(i,j)} i \cdot j P(X = i, Y = j) = \frac{1}{6} + \frac{2}{6} = \frac{1}{2}.$$

Weiter ist

$$\mathbb{E}(Z^2) = \mathbb{E}(X \cdot Y) = \sum_{(i,j)} (i \cdot j)^2 P(X = i, Y = j) = \frac{1}{6} + \frac{4}{6} = \frac{5}{6}.$$

und damit gilt für die Varianz von ${\cal Z}$

$$V(Z) = \mathbb{E}(Z^2) - (\mathbb{E}(Z))^2 = \frac{5}{6} - \frac{1}{4} = \frac{7}{12}.$$

e) Die Zufallsvariablen X und Y sind nicht stochastisch unabhängig, da

$$\mathbb{P}(X=0,Y=0) = \frac{1}{3} \neq \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbb{P}(Y=0) \cdot \mathbb{P}(X=0).$$

Aufgabe 5 (9 Punkte)

Es seien X, Y stochastisch unabhängige jeweils $\mathcal{N}(0, 1)$ -verteilte Zufallsvariablen. Für $\alpha > 0$ sei $U := X - \alpha Y$ und $V := X + \alpha Y$.

- a) Welche Verteilungen haben U und V?
- b) Zeigen Sie, dass $Cov(U, V) = 1 \alpha^2$ gilt.
- c) Berechnen Sie den Korrelationskoeffizienten $\rho(U, V)$.
- d) Für welche α sind U und V
 - 1.) positiv korreliert,
 - 2.) unkorreliert,
 - 3.) negativ korreliert?

Lösung:

a) Es gilt

$$U, V \sim \mathcal{N}(0, 1 + \alpha^2)$$

b) Es gilt mit den Rechenregeln für Kovarianzen

$$Cov(U, V) = Cov(X - \alpha Y, X + \alpha Y)$$

$$= Cov(X, X) - \alpha Cov(Y, X) + \alpha Cov(X, Y) - \alpha^{2} Cov(Y, Y)$$

$$= V(X) - \alpha^{2} V(Y) = 1 - \alpha^{2}.$$

c) Der Korrelationskoeffizient ist gegeben durch

$$\rho(U, V) = \frac{\text{Cov}(U, V)}{\sqrt{V(U) \cdot V(V)}} = \frac{1 - \alpha^2}{\sqrt{(1 + \alpha^2)^2}} = \frac{1 - \alpha^2}{1 + \alpha^2}.$$

- d) Wegen $\alpha > 0$ gilt:
 - 1.) Es muss gelten $\rho(U, V) > 0$, also $0 < \alpha < 1$.
 - 2.) Es muss gelten $\rho(U, V) = 0$, also $\alpha = 1$.
 - 3.) Es muss gelten $\rho(U, V) < 0$, also $\alpha > 1$.

Aufgabe 6 (11 Punkte)

Es soll der unbekannte Parameter $\vartheta>0$ für die Verteilung mit der Dichte

$$f_{\vartheta}(x) = \begin{cases} \frac{1}{\vartheta^2} \cdot x \cdot \exp\left(-\frac{x}{\vartheta}\right), & 0 \le x < \infty, \\ 0, & \text{sonst} \end{cases}$$

bestimmt werden.

Hinweis: Sie können ohne Beweis verwenden: Hat die Zufallsvariable X die Dichte f_{ϑ} , so gilt $\mathbb{E}_{\vartheta}(X) = 2\vartheta$.

- a) Geben Sie die zur Stichprobe $x=(x_1,\ldots,x_n)$ gehörende Likelihood-Funktion $L_x(\vartheta)$ an und berechnen Sie die Loglikelihood-Funktion $M_x(\vartheta)$.
- b) Zeigen Sie, dass der Maximum-Likelihood-Schätzer $\hat{\vartheta}(x)$ für ϑ gegeben ist durch

$$\hat{\vartheta}(x) = \frac{1}{2n} \sum_{j=1}^{n} x_j.$$

- c) Ist der Schätzer erwartungstreu für $\gamma(\vartheta) = \vartheta$? Ist der Schätzer asymptotisch erwartungstreu für $\gamma(\vartheta) = \vartheta$?
- d) Geben Sie den Momenten-Schätzer $\tilde{\vartheta}(x)$ für ϑ an.

Lösung:

a) Die zur Stichprobe $x=(x_1,\ldots,x_n)$ gehörende Likelihood-Funktion $L_x(\vartheta)$ lautet

$$L_x(\vartheta) = \prod_{j=1}^n f_{\vartheta}(x_j) = \prod_{j=1}^n \frac{1}{\vartheta^2} \cdot x_j \cdot \exp\left(-\frac{x_j}{\vartheta}\right) = \frac{1}{\vartheta^{2n}} \cdot \exp\left(-\frac{1}{\vartheta} \sum_{j=1}^n x_j\right) \prod_{j=1}^n x_j.$$

Die Loglikelihood-Funktion $M_x(\vartheta)$ lautet entsprechend

$$M_x(\vartheta) = \log L_x(\vartheta) = -2n \log \vartheta - \frac{1}{\vartheta} \sum_{j=1}^n x_j + \sum_{j=1}^n \log(x_j).$$

b) Differenzieren von $M_x(\vartheta)$ nach ϑ liefert

$$M'_x(\vartheta) = -2n\frac{1}{\vartheta} + \frac{1}{\vartheta^2} \sum_{j=1}^n x_j = \frac{1}{\vartheta^2} \left(\sum_{j=1}^n x_j - 2n\vartheta \right) \stackrel{!}{=} 0.$$

also ist $\hat{\vartheta}(x)$ ein stationärer Punkt von M_x und es ist wegen dem Vorzeichenwechsel von + nach – auch ein Maximum. Also ist $\hat{\vartheta}(x)$ der gesuchte Maximum-Likelihood-Schätzer.

c) Es gilt mit dem Hinweis

$$\mathbb{E}(\hat{\vartheta}(X_1,\ldots,X_n)) = \mathbb{E}\left(\frac{1}{2n}\sum_{j=1}^n X_j\right) = \frac{1}{2n}\sum_{j=1}^n \mathbb{E}(X_j) = \frac{1}{2}\mathbb{E}(X_1) = \frac{1}{2}2\vartheta = \vartheta.$$

Also ist $\hat{\vartheta}(x)$ ein erwartungstreuer Schätzer für ϑ und demzufolge auch asymptotisch erwartungstreu.

9

d) Der Momentenschätzer berechnet sich mit Hilfe des Hinweises durch

$$\frac{1}{n}\sum_{j=1}^{n}x_{j} = \mathbb{E}(X_{1}) = 2\vartheta.$$

Auflösen nach ϑ liefert

$$\tilde{\vartheta}(x) = \frac{1}{2n} \sum_{j=1}^{n} x_j = \hat{\vartheta}(x).$$

Aufgabe 7 (9 Punkte)

Es seien X, Y jeweils Exp(1)-verteilte Zufallsvariablen, und es gelte Cov(X, Y) = 2. Wir betrachten das zufällige Rechteck mit den Kantenlängen X und Y, also mit zufälligem Flächeninhalt $A = X \cdot Y$ und Umfang U = 2(X + Y).

- a) Welchen erwarteten Flächeninhalt $\mathbb{E}(A)$ hat das zufällige Rechteck?
- b) Berechnen Sie Erwartungswert $\mathbb{E}(U)$ und Varianz V(U) des Umfangs des Rechtecks.
- c) Seien die Zufallsvariablen X, Y nun stochastisch unabhängig. Geben Sie die Dichte der Verteilung des bivariaten Zufallsvektors (X, Y) an.
- d) Wie ist die Zufallsvariable X + Y verteilt?

Lösung:

a) Der erwartete Flächeninhalt lässt sich über die angegebene Kovarianz ausrechnen mit Hilfe der Formel

$$Cov(X, Y) = \mathbb{E}(X \cdot Y) - \mathbb{E}(X)\mathbb{E}(Y).$$

Mit $\mathbb{E}(X) = \mathbb{E}(Y) = 1$ gilt

$$\mathbb{E}(X \cdot Y) = \operatorname{Cov}(X, Y) + \mathbb{E}(X)\mathbb{E}(Y) = 2 + 1 = 3.$$

b) Es gilt

$$\mathbb{E}(U) = 2\mathbb{E}(X+Y) = 2\left(\mathbb{E}(X) + \mathbb{E}(Y)\right) = 4$$

und mit V(X) = V(Y) = 1

$$V(U) = V(2(X+Y)) = 4V(X+Y) = 4\left(V(X) + V(Y) + 2\mathrm{Cov}(X,Y)\right) = 4\left(1 + 1 + 2 \cdot 2\right) = 24.$$

c) Wegen der stochastischen Unabhängigkeit der Zufallsvariablen gilt für die Dichte des Zufallsvektors (X,Y)

$$f_{(X,Y)}(s,t) = f_X(s) \cdot f_Y(t), \ s,t \in \mathbb{R}.$$

Mit den Dichten der Exp(1)-Verteilung

$$f_X(s) = e^{-s}, \ s > 0$$

gilt dann

$$f_{(X,Y)}(s,t) = e^{-s} \cdot e^{-t} = e^{-(s+t)}, \ s,t \in [0,\infty).$$

d) Wegen der Faltungsformel auf S. 111 des Skriptes gilt

$$Exp(1) * Exp(1) = \Gamma(2, 1).$$