

Institut für Stochastik

Dr. S. Lerch T. Göll

Nachname:
Vorname:
MatrNr.:

Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik für die Fachrichtung Maschinenbau

Datum: 29. Juli 2020

Bearbeitungszeit: 90 Minuten

- Zugelassene Hilfsmittel: Skriptum zur Vorlesung, Ausdrucke der Vorlesungsfolien, Taschenrechner (nicht vernetzbar über kabellose Verbindungen), Wörterbuch.
- Bei dieser Klausur werden nur diejenigen Ergebnisse gewertet, die in die vorgesehenen Kästchen eingetragen sind! Eine Begründung bzw. Herleitung der Ergebnisse wird nicht verlangt.
- Vereinfachen Sie Ergebnisse soweit wie möglich. Geben Sie Ergebnisse so exakt wie möglich an, z.B. als Bruch. Runden Sie **Endergebnisse** auf 3 **Nachkommastellen** genau, wenn nicht anders angegeben.
- Hinreichend zum Bestehen der Klausur sind 20 Punkte.

Viel Erfolg!

Aufgabe	1 (10 P)	2 (10 P)	3 (10 P)	4 (10 P)	5 (10 P)	$\sum (50 \text{ P})$
Punkte						
Korrektor						

bestanden	nicht bestanden	Note

Verteilungsfunktion $\Phi(x)$ der Standard – Normalverteilung $\mathcal{N}(0,1)$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7793	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Aufgabe 1 (4 + 2 + 1 + 2 + 1 = 10 Punkte)

Gegeben sei eine Urliste mit den Paaren $(x_1, y_1), ..., (x_{15}, y_{15})$:

j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	11	2.4								l	l			1	
y_j	3.8	-0.7	-1.6	1.5	0.9	1.2	1.5	0.4	2.2	0.7	1.1	-0.8	2.9	1.2	0.8

a) Berechnen Sie die Stichprobenmittel \bar{x}, \bar{y} , die Stichproben-Standardabweichungen s_x, s_y und den empirischen Korrelationskoeffizienten r_{xy} von $(x_1, y_1), ..., (x_{15}, y_{15})$. **Hinweis:**

$$\sum_{j=1}^{15} x_j = 30.9, \quad \sum_{j=1}^{15} y_j = 15.1, \quad \sum_{j=1}^{15} x_j^2 = 75.69, \quad \sum_{j=1}^{15} y_j^2 = 42.07, \quad \sum_{j=1}^{15} x_j y_j = 19.96$$

$$\bar{x} = \boxed{2.06}$$

$$s_x = \boxed{0.927}$$

$$r_{xy} = \boxed{-0.62}$$

$$\bar{y} = \boxed{1.007}$$

$$s_y = \boxed{1.385}$$

b) Bestimmen Sie die zugehörige Regressionsgerade $y=a^*+b^*x$ von y auf x.

$$a^* = \boxed{2.914}$$

$$b^* = \boxed{-0.926}$$

c) Bestimmen Sie den Stichproben-Variationskoeffizient v_x von $(x_1,...,x_{15})$

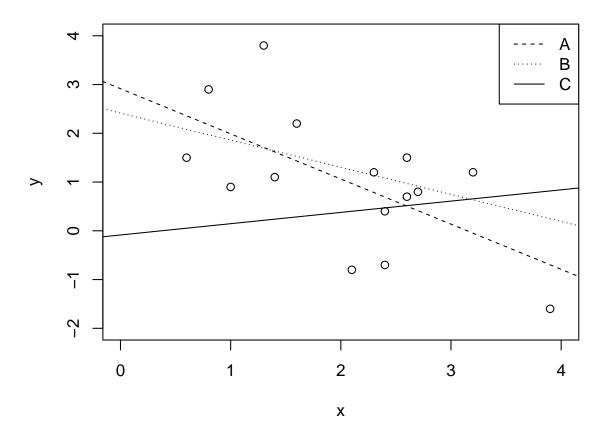
$$v_x = \boxed{ 0.45}$$

d) Bestimmen Sie den Median \tilde{y} und das untere Quartil $\tilde{y}_{0.25}$ von $(y_1,...,y_{15}).$

$$\tilde{y} = \boxed{ 1.1 \qquad \qquad \tilde{y}_{0.}}$$

$$\tilde{y}_{0.25} = 0.4$$

e) Folgendes Schaubild zeigt die Stichprobe $(x_1, y_1), ..., (x_{15}, y_{15})$ und 3 Geraden (A, B und C).



Bei welcher der 3 Geraden handelt es sich um die Regressionsgerade zur Stichprobe $(x_1,y_1),...,(x_{15},y_{15})$? (Kreuzen Sie an, keine Begründung erforderlich)

X	A	$ _{\mathrm{B}}$	C
Λ	Α	D	

a)

$$\bar{x} = \frac{\sum_{i=1}^{15} x_i}{n} = \frac{30.9}{15} = 2.06 \underbrace{0.5 \text{ P}}$$

$$\bar{y} = \frac{\sum_{i=1}^{15} y_i}{n} = \frac{15.1}{15} = 1.0066 \dots \approx 1.007 \underbrace{0.5 \text{ P}}$$

$$s_x^2 = \frac{\sum_i x_i^2 - n\bar{x}^2}{n - 1} = \frac{75.69 - 15 \cdot 2.06^2}{14} = 0.859714 \dots$$

$$\Rightarrow s_x = \sqrt{s_x^2} = 0.927207 \dots \approx 0.927 \underbrace{1 \text{ P}}$$

$$s_y^2 = \frac{\sum_i y_i^2 - n\bar{y}^2}{n - 1} = \frac{42.07 - 15 \cdot 1.0066 \dots^2}{14} = 1.91923 \dots$$

$$\Rightarrow s_y = \sqrt{s_y^2} = 1.385366 \dots \approx 1.385 \underbrace{1 \text{ P}}$$

$$r_{xy} = \frac{\sum_i x_i y_i - n\bar{x}\bar{y}}{(n - 1)s_x s_y} = \frac{19.96 - 15 \cdot 2.06 \cdot 1.0066 \dots}{14 \cdot 0.927207 \dots \cdot 1.385366 \dots} = -0.61979 \dots \approx -0.62 \underbrace{1 \text{ P}}$$

b)

$$b^* = r_{xy} \frac{s_y}{s_x} = -0.61979 \dots \frac{0.927207 \dots}{1.385366 \dots} = -0.926055 \dots \approx -0.926 \boxed{1 \text{ P}}$$

$$a^* = \bar{y} - b^* \bar{x} = 1.0066 \dots - (-0.926055 \dots) \cdot 2.06 = 2.9143 \dots \approx 2.914 \boxed{1 \text{ P}}$$

c)

$$v_x = \frac{s_x}{\bar{x}} = \frac{0.927207...}{2.06} = 0.450100... \approx 0.45$$
 1 P

d)

$$\tilde{y} = y_{(8)} = 1.1 \boxed{1 \text{ P}}$$

$$\tilde{y}_{0.25} = y_{(4)} = 0.4 \boxed{1 \text{ P}}$$

e) Gerade A, dies ist ablesbar aus den in Aufgabenteil b) berechneten Koeffizienten der Regressionsgeraden. 1 P

Aufgabe 2 (2 + 2 + 2 + 2 + 2 = 10 Punkte)

Sei (X,Y) ein Zufallsvektor mit $X \in \{1,2\}$ und $Y \in \{-1,0,1\}$. Die folgende Tabelle soll die gemeinsame Verteilung $\mathbb{P}(X=i,Y=j)$ von X und Y in Abhängigkeit von zwei Konstanten $a,b \in \mathbb{R}$ für die Werte $i \in \{1,2\}$ und $j \in \{-1,0,1\}$ angeben.

i j	-1	0	1
1	a	b	a
2	2b	a	3a

a) Bestimmen Sie die Menge aller $(a,b) \in \mathbb{R}^2$, sodass die obige Vorschrift eine wohldefinierte Wahrscheinlichkeitsverteilung ist.

$$\{a, b \in \mathbb{R} : a \ge 0, b \ge 0 \text{ und } 6a + 3b = 1\}$$

b) Bestimmen Sie $(a,b) \in \mathbb{R}^2$, dass die obige Vorschrift weiterhin eine Wahrscheinlichkeitsverteilung ist und zudem $\mathbb{P}(Y \ge 0 \mid X = 2) = \frac{1}{5}$ gilt.

$$a = \frac{\frac{1}{30}}{b}$$

$$b = \frac{\frac{4}{15}}{b}$$

Im Folgenden seien $a = \frac{1}{12}$ und $b = \frac{1}{6}$ fest.

c) Bestimmen Sie folgende Wahrscheinlichkeiten.

$$\mathbb{P}(X=1) = \frac{\frac{1}{3}}{\frac{3}{4}}$$

$$\mathbb{P}(Y \neq 0) = \frac{\frac{3}{4}}{\frac{7}{9}}$$

$$\mathbb{P}(X=2 \mid Y \neq 0) = \frac{\frac{7}{9}}{\frac{1}{3}}$$

d) Bestimmen Sie folgende Erwartungswerte und die Kovarianz von X und Y.

$\mathbb{E}X =$	5 3	$\mathbb{E}Y =$	$-\frac{1}{12}$
$\mathbb{E}(X\cdot Y) =$	$-\frac{1}{6}$	C(X,Y) =	$-\frac{1}{36}$

e) Sind X und Y stochastisch unabhängig?

$ brack J_{ m a}$	X	Nein
100		1 (011)

Begründen Sie Ihre Antwort.

$$C(X,Y) \neq 0$$

a) Damit es sich tatsächlich um eine Wahrscheinlichkeitsverteilung handelt, muss gelten

$$\sum_{i \in \{1,2\}, j \in \{-1,0,1\}} \mathbb{P}(X=i,Y=j) = 1.$$

Weiterhin müssen für alle $i \in \{1, 2\}$ und $j \in \{-1, 0, 1\}$ die Wahrscheinlichkeiten $\mathbb{P}(X = i, Y = j) \ge 0$ sein. Es ergibt sich folglich als Menge aller zulässigen $(a, b) \in \mathbb{R}^2$:

$$\{a, b \in \mathbb{R} : a \ge 0 \ \boxed{0.5 \ P}, b \ge 0 \ \boxed{0.5 \ P} \text{ und } 6a + 3b = 1 \ \boxed{1 \ P} \}$$

b) Da $\mathbb{P}(Y \ge 0 \mid X = 2) = \frac{\mathbb{P}(Y \ge 0, X = 2)}{\mathbb{P}(X = 2)} = \frac{4a}{4a + 2b}$ ergibt sich gemeinsam mit Aufgabenteil a) folgendes Gleichungssystem:

$$6a + 3b = 1$$
$$\frac{4a}{4a + 2b} = \frac{1}{5}$$

Dieses hat die eindeutige Lösung $(a,b)=(\frac{1}{30},\frac{4}{15}).$ 1 P + 1 P

c) Die Randverteilungen von X bzw. Y sind gegeben durch die Zeilen- bzw. Spaltensummen. Damit ergibt sich

$$\mathbb{P}(X=1) = 2a + b = \frac{1}{3} \quad \boxed{0,5 \text{ P}}$$

$$\mathbb{P}(Y \neq 0) = 1 - P(Y=0) = 1 - (a+b) = 1 - \frac{3}{12} = \frac{3}{4} \quad \boxed{0,5 \text{ P}}$$

$$\mathbb{P}(X=2 \mid Y \neq 0) = \frac{\mathbb{P}(X=2, Y \neq 0)}{\mathbb{P}(Y \neq 0)} = \frac{2b + 3a}{1 - (a+b)} = \frac{7}{9} \quad \boxed{0,5 \text{ P}}$$

$$\mathbb{P}(XY>0) = \mathbb{P}(Y=1) = 4a = \frac{1}{3} \quad \boxed{0,5 \text{ P}}$$

d) Es gilt

$$\mathbb{E}X = \sum_{i=1}^{2} i \mathbb{P}(X = i) = 2a + b + 2(4a + 2b) = \frac{5}{3} \quad \boxed{0,5 \text{ P}}$$

$$\mathbb{E}Y = \sum_{j=-1}^{1} j \mathbb{P}(Y = j) = -(a + 2b) + 4a = -\frac{1}{12} \quad \boxed{0,5 \text{ P}}$$

$$\mathbb{E}(X \cdot Y) = \sum_{i=1}^{2} \sum_{j=-1}^{1} ij \mathbb{P}(X = i, Y = j) = -a - 4b + a + 6a = -\frac{1}{6} \quad \boxed{0,5 \text{ P}}$$

$$\mathbb{C}(X, Y) = \mathbb{E}(X \cdot Y) - \mathbb{E}X \cdot \mathbb{E}Y = -\frac{1}{36} \quad \boxed{0,5 \text{ P}}$$

e) X und Y können nicht stochastisch unabhängig sein, da die Kovarianz $\mathrm{C}(X,Y) \neq 0$ ist. $\boxed{1\ \mathrm{P}+1\ \mathrm{P}}$

Aufgabe 3 (4 + 2 + 4 = 10 Punkte)

Daniel und seine Freunde spielen zusammen ein Online-Spiel. Jede Wiederholung des Spiels, die die Gruppe entweder gewinnt oder verliert (die Möglichkeit eines Unentschiedens gibt es nicht), dauert 5 Minuten. Die Wahrscheinlichkeit, dass die Gruppe ein Spiel gewinnt, liege bei p=0.5. Sie können annehmen, dass die Spiele unabhängig voneinander und stets unter denselben Bedingungen stattfinden.

- a) Daniel und seine Freunde legen zunächst fest, dass sie 10 Runden spielen. Mit X sei die Anzahl der gewonnenen Spiele bezeichnet.
 - i) Welche Verteilung besitzt die Zufallsvariable X?

Bin(10,0.5)

ii) Wie groß ist die Wahrscheinlichkeit, dass die Gruppe genau 4 dieser 10 Spiele gewinnt?

0.205

iii) Wir nehmen an, dass die Freunde die ersten beiden Spiele verlieren. Wie groß ist die Wahrscheinlichkeit, dass sie von den 8 verbleibenden Spielen genau 3 gewinnen?

0.219

iv) Wie groß müsste die Gewinnwahrscheinlichkeit p sein, damit die Gruppe mit einer Wahrscheinlichkeit von mindestens 50% alle 10 Spiele gewinnt?

 $p \ge \boxed{ 0.933}$

- b) Daniel und seine Freundin Janine hatten eigentlich ausgemacht, dass sie gemeinsam einen Film schauen. Deshalb bittet Janine Daniel darum, das Online-Spiel zu beenden. Daniel möchte nicht direkt aufhören, sondern teilt seinen Freunden mit, dass er geht, nachdem die Gruppe das nächste Spiel verloren hat.
 - i) Es sei Z die Zufallsvariable, die die Anzahl der Runden vor der nächsten Niederlage beschreibt. Welche Verteilung besitzt Z?

 $Z \sim \boxed{ \mathcal{G}(0.5) \text{ bzw. Nb}(1, 0.5) }$

ii) Wie hoch ist die erwartete Anzahl an Runden, die Janine warten muss, bis sie mit dem Filmabend beginnen können?

2 Runden

- c) Während Daniel ohne Internetzugang unterwegs ist, nimmt Janine seinen Platz in der Gruppe ein. In dieser neuen Zusammensetzung gewinnt die Gruppe 42 von 75 Spielen.
 - i) Bestimmen Sie die untere Konfidenzschranke U_n^* und die obere Konfidenzschranke O_n^* eines approximativen Konfidenzintervalls zur Konfidenzwahrscheinlichkeit 90% für die unbekannte Gewinnwahrscheinlichkeit q der Gruppe in der neuen Zusammensetzung. Sie können weiterhin davon ausgehen, dass die Spiele unabhängig voneinander und unter gleichen Bedingungen stattfinden.

$$U_n^* = \boxed{ 0.466}$$

$$O_n^* = \boxed{ 0.654}$$

ii) Basierend auf der Stichprobe der 75 Spiele in ihrer neuen Zusammensetzung möchte die Gruppe mit Hilfe eines statistischen Tests die Nullhypothese $H_0: q \leq 0.5$ gegen die Alternative $H_1: q > 0.5$ testen. Welcher Test ist für diese Situation geeignet?

einseitiger Binomialtest

Welche Prüfgröße würde die Gruppe verwenden?

Trefferzahl (= Zahl der gewonnenen Spiele)

- a) i) Es seien $X_j = 1$ {Die Gruppe gewinnt Spiel j}, j = 1, ..., 10. Dann sind die Zufallsvariablen $X_1, ..., X_{10}$ uiv. Bin(1, 0.5)-verteilt. Mit dem Additionsgesetz der Binomialverteilung gilt somit $X = \sum_{j=1}^{10} X_j \sim \text{Bin}(10, 0.5)$.
 - ii) $\mathbb{P}(X=4) = \binom{10}{4} \cdot 0.5^4 \cdot 0.5^6 = \binom{10}{4} \cdot 0.5^{10} = 0.205 \boxed{1 \text{ P}}$
 - iii) Die Spiele sind unabhängig voneinander, daher besitzt die Anzahl Y der gewonnenen Spiele innerhalb der verbleibenden 8 Spiele eine ${\rm Bin}(8,0.5)$ -Verteilung. Somit gilt

$$\mathbb{P}(Y=3) = \binom{8}{3} \cdot 0.5^3 \cdot 0.5^5 = 0.219 \ \boxed{1 P}$$

iv)
$$\mathbb{P}(X = 10) = \binom{10}{10} \cdot p^{10} \cdot (1 - p)^0 = p^{10} \stackrel{!}{\geq} 0.5 \Leftrightarrow p \geq 0.933 \boxed{1 \text{ P}}$$

- b) i) Z beschreibt die Anzahl der Runden **vor** der nächsten Niederlage. Die Wahrscheinlichkeit für eine Niederlage beträgt 0.5, somit ist $Z \sim \mathcal{G}(0.5)$ (bzw. $Z \sim \text{Nb}(1, 0.5)$).
 - ii) Z beschreibt die Anzahl der Runden **vor** der nächsten Niederlage, also beschreibt Z+1 gerade die Anzahl der Runden, die Janine warten muss, bis sie mit dem Filmabend beginnen können. Also beträgt die erwartete Anzahl gerade $\mathbb{E}[Z]+1=1+1=2$ Runden. Dabei gilt $\mathbb{E}[Z]=1$, da der Erwartungswert einer $\mathcal{G}(p)$ -verteilten Zufallsvariable $\frac{1-p}{p}$ ist. $\boxed{1\ P}$
- c) i) Die Grenzen des asymptotische Konfidenzintervalls zum 90%-Niveau für q bei Binomialverteilung sind gegeben durch (Beispiel 18.5):

$$U_n^* = T_n - \frac{h}{\sqrt{n}} \sqrt{(T_n(1 - T_n))}$$

$$O_n^* = T_n + \frac{h}{\sqrt{(T_n(1 - T_n))}}$$

$$O_n^* = T_n + \frac{h}{\sqrt{n}} \sqrt{(T_n(1 - T_n))},$$

mit $h = \Phi^{-1}(1 - \frac{\alpha}{2}) = 1.6459$ (Ablesen aus der Tabelle auf Seite 2 oder Tabelle auf Folie 18-20). Anhand der vorliegenden Daten erhält man den Schwätzwert $T_n = \frac{42}{75}$ und damit die folgenden Grenzen des Konfidenzintervalls:

$$U_n^* = \frac{42}{75} - \frac{1.6459}{\sqrt{75}} \sqrt{\frac{42}{75} \cdot \frac{33}{75}} \approx 0.466$$
 1 P

$$O_n^* = \frac{42}{75} + \frac{1.6459}{\sqrt{75}} \sqrt{\frac{42}{75} \cdot \frac{33}{75}} \approx 0.654$$
 1 P

ii) In dieser Situation ist ein einseitiger Binomialtest 1 P angemessen (Beispiel 19.2). Als Prüfgröße ergibt sich entsprechend die Anzahl gewonnener Spiele, also die Trefferzahl $T = \sum_{i=1}^{75} x_i$, wobei x_i der Ausgang des *i*-ten Spiels ist. 1 P.

Aufgabe 4
$$(2+3+1+2+2=10 \text{ Punkte})$$

Zunächst betrachten wir zwei Zufallsvariablen X, Y, deren gemeinsame Dichte durch

$$f_{X,Y}(x,y) = \begin{cases} c \cdot (x+y), & \text{falls } 0 \le x \le 1, \ 0 \le y \le 1, \ x+y \ge 1, \\ 0, & \text{sonst}, \end{cases}$$

für eine Konstante c > 0 gegeben ist. Eine Skizze des Definitionsbereichs von $f_{X,Y}$ finden Sie in Abbildung ??.

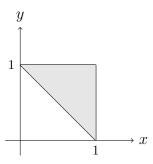


Abbildung 1: Definitionsbereich der Funktion $f_{X,Y}$

a) Bestimmen Sie die Konstante c so, dass $f_{X,Y}$ eine Dichte ist.

$$c = \frac{3}{2}$$

Welche Eigenschaft einer Dichtefunktion haben Sie verwendet um c zu bestimmen?

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$$

b) Bestimmen Sie die Randdichte f_X der Zufallsvariablen X und den Erwartungswert von X. (Verwenden Sie den allgemeinen Parameter c, falls Sie Aufgabenteil a) nicht lösen konnten.)

$$f_X(x) = \begin{cases} \frac{3}{4}x^2 + \frac{3}{2}x \text{ bzw. } c\left(\frac{x^2}{2} + x\right), & \text{falls } 0 \le x \le 1, \\ 0, & \text{sonst.} \end{cases}$$

$$\mathbb{E}[X] = \begin{bmatrix} \frac{11}{16} \text{ bzw. } c \cdot \frac{11}{24} \end{bmatrix}$$

$$\mathbb{E}[X] = \frac{11}{16} \text{ bzw. } c \cdot \frac{11}{24}$$

Nun seien X und Y zwei unabhängige, normalverteilte Zufallsvariablen. Es ist bekannt, dass $X \sim \mathcal{N}(2,4)$ gilt. Zudem besitzt die Zufallsvariable Z = X + Y eine Normalverteilung mit Erwartungswert 2 und Varianz 6.

c) Bestimmen Sie die Verteilung von Y.

$$Y \sim \mathcal{N}(0,2)$$

d) Bestimmen Sie die Verteilungen der beiden Zufallsvariablen

$$U = 3X - 1,$$
 $V = \frac{Z+3}{4}.$

$$U \sim \mathcal{N}(5, 36)$$

$$V \sim \mathcal{N}\left(\frac{5}{4}, \frac{3}{8}\right)$$

e) Berechnen Sie folgende Wahrscheinlichkeiten.

$$\mathbb{P}(-1 \le X \le 2) = \boxed{0.433}$$

$$\mathbb{P}(X^2 > 1) = \boxed{0.758}$$

$$\mathbb{P}(X^2 > 1) = 0.758$$

a) Damit $f_{X,Y}$ eine Dichte ist, muss $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$ gelten 1 P.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = \int_{0}^{1} \int_{1-y}^{1} c(x+y) \, dx \, dy$$
$$= c \cdot \int_{0}^{1} \left[\frac{x^{2}}{2} + xy \right]_{1-y}^{1} \, dy$$
$$= c \int_{0}^{1} \frac{y^{2}}{2} + y \, dy = c \cdot \frac{2}{3}.$$

Somit muss $c = \frac{3}{2}$ gelten. 1 P

b) Für x > 0 oder x < 1 ist $f_{X,Y}(x,y) = 0$ und somit gilt auch $f_X(x) = 0$ 0.5 P. Sei nun also $0 \le x \le 1$. 0.5 P. Dann gilt

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

$$= \int_{1-x}^{1} \frac{3}{2} (x+y) \, dy$$

$$= \frac{3}{2} \left[\frac{y^2}{2} + xy \right]_{y=1-x}^{1} = \frac{3}{2} \left(\frac{x^2}{2} + x \right) .$$
 1 P

Die Berechnung des Erwartungswerts erfolgt gemäß $\mathbb{E}[X]=\int_{-\infty}^{\infty}x\cdot f_X(x)\,dx$. Somit gilt

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$
$$= \int_0^1 \frac{3}{4} x^3 + \frac{3}{2} x^2 \, dx$$
$$= \left[\frac{3}{16} x^2 + \frac{1}{2} x^3 \right]_0^1 = \frac{11}{16}.$$
 1 P

c) X und Y sind nach Voraussetzung unabhängige, normalverteilte Zufallsvariablen und $X \sim \mathcal{N}(2,4), \ Z \sim \mathcal{N}(2,6)$. Sei $Y \sim \mathcal{N}(\nu,\tau^2)$ (Normalverteilung bereits aus der Aufgabenstellung bekannt). Aufgrund des Additionsgesetzes für unabhängige, normalverteilte Zufallsvariablen gilt für Z = X + Y

$$Z \sim \mathcal{N}(2 + \nu, 4 + \tau^2) \stackrel{\text{Vor.}}{=} \mathcal{N}(2, 6).$$

Daraus folgt $\nu = 0$ und $\tau^2 = 2$ und daher $Y \sim \mathcal{N}(0, 2)$. 1 P

d) Es sei U = 3X - 1. Somit ist U auch normalverteilt. Wir verwenden die Eigenschaften von Erwartungswert und Varianz aus der Vorlesung und erhalten

$$\mathbb{E}[U] = 3\mathbb{E}[X] - 1 = 5, \quad \mathbb{V}(U) = 9\mathbb{V}(X) = 36.$$

Somit gilt $U \sim \mathcal{N}(5, 36)$. 1 P

Nun sei $V = \frac{Z+3}{4}$. Auch diese Zufallsvariable ist normalverteilt. Wie zuvor erhalten wir Erwartungswert und Varianz durch

$$\mathbb{E}[V] = \frac{1}{4}\mathbb{E}[Z] + \frac{3}{4} = \frac{5}{4}, \quad \mathbb{V}(V) = \frac{1}{16}\mathbb{V}(Z) = \frac{3}{8}.$$

Also gilt $V \sim \mathcal{N}\left(\frac{5}{4}, \frac{3}{8}\right)$. 1 P

e) Da $X \sim \mathcal{N}(2,4)$, gilt $\frac{X-2}{2} \sim \mathcal{N}(0,1)$. Also gilt

$$\mathbb{P}(-1 \le X \le 2) = \mathbb{P}\left(\frac{-1-2}{2} \le \frac{X-2}{2} \le \frac{2-2}{2}\right)$$

$$= \mathbb{P}\left(-\frac{3}{2} \le \frac{X-2}{2} \le 0\right)$$

$$= \Phi(0) - \Phi\left(-\frac{3}{2}\right) = \Phi(0) + \Phi\left(\frac{3}{2}\right) - 1 \approx 0.433. \boxed{1 P}$$

Weiterhin ist $\mathbb{P}(X^2>1)=1-\mathbb{P}(X^2\leq 1)=1-\mathbb{P}(-1\leq X\leq 1)$ und damit

$$1 - \mathbb{P}(-1 \le X \le 1) = 1 - \mathbb{P}\left(\frac{-1 - 2}{2} \le \frac{X - 2}{2} \le \frac{1 - 2}{2}\right)$$
$$= 1 - \mathbb{P}\left(-\frac{3}{2} \le \frac{X - 2}{2} \le \frac{-1}{2}\right)$$
$$= 1 - \left(\Phi\left(-\frac{1}{2}\right) - \Phi\left(-\frac{3}{2}\right)\right) \approx 0.758. \boxed{1 P}$$

Aufgabe 5 (4 + 2 + 2 + 2 = 10 Punkte)

Für $\gamma > 0$ und $x \in \mathbb{N}_0 = \{0, 1, 2, \dots\}$ definiert

$$f_{\gamma}(x) = \exp(-\gamma^2) \cdot \frac{\gamma^{2x}}{x!}$$

die Zähldichte einer diskreten Verteilung.

a) Der unbekannte Parameter γ soll basierend auf einer unabhängigen Stichprobe $x = (x_1, \ldots, x_n)$ mit Hilfe der Maximum-Likelihood-Methode geschätzt werden. Hierbei dürfen Sie annehmen, dass $\sum_{i=1}^{n} x_i > 0$.

Bestimmen Sie die Likelihood-Funktion $L_x(\gamma)$.

$$L_x(\gamma) = \exp(-n\gamma^2) \prod_{i=1}^n \frac{\gamma^{2x_i}}{x_i!}$$

Bestimmen Sie die Loglikelihood-Funktion $M_x(\gamma)$.

$$M_x(\gamma) = -n\gamma^2 + 2\log(\gamma)\sum_{i=1}^n x_i - \sum_{i=1}^n \log(x_i!)$$

Bestimmen Sie die Ableitung $M_x'(\gamma)$ der Loglikelihood-Funktion.

$$M'_{x}(\gamma) = -2n\gamma + \frac{2}{\gamma} \sum_{i=1}^{n} x_{i}$$

Bestimmen Sie einen Maximum-Likelihood-Schätzer $\widehat{\gamma}(x)$ für γ .

$$\widehat{\gamma}(x) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i}$$

b) Basierend auf der unabhängigen Stichprobe $x = (x_1, \ldots, x_n)$ soll nun der unbekannte Parameter γ mit Hilfe der Momenten-Methode geschätzt werden. Bestimmen Sie den Erwartungswert $m_1(\gamma)$ der durch f_{γ} definierten diskreten Verteilung.

$$m_1(\gamma) = \boxed{ \qquad \qquad \gamma^2 }$$

Bestimmen Sie den Momentenschätzer $\widehat{\gamma}_M(x)$ für γ .

$$\widehat{\gamma}_M(x) = \sqrt{\frac{1}{n} \sum_{i=1}^n x_i}$$

Im Folgenden seien $X_1, X_2, ...$ unabhängige und identisch verteilte Zufallsvariablen mit der durch f_{γ} definierten diskreten Verteilung.

c) Bestimmen Sie die Verteilung von $\sum_{i=1}^{n} X_i$.

$$\sum_{i=1}^{n} X_i \sim \boxed{ \text{Po}(n\gamma^2)}$$

d) Geben Sie eine Schätzfolge $T_n(X_1,\dots,X_n)$ an, die konsistent für die Varianz $\mathbb{V}X_1$ ist.

$$T_n(X_1, \dots, X_n) = \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \left(\text{oder } \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \right)}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \left(\text{oder } \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \right)}$$

Begründen Sie Ihre Antwort.

Nach Satz 17.16 sind beide oben angegebenen Schätzfolgen konsistente Schätzfolgen für die Varianz bei beliebiger Verteilungsannahme.

a) Likelihood-Funktion:

$$L_x(\gamma) = \prod_{i=1}^n f_{\gamma}(x_i) = \prod_{i=1}^n \exp(-\gamma^2) \frac{\gamma^{2x_i}}{x_i!} = \exp(-n\gamma^2) \prod_{i=1}^n \frac{\gamma^{2x_i}}{x_i!}.$$
 1 P

Loglikelihood-Funktion:

$$M_x(\gamma) = \log L_x(\gamma) = \log \left(\exp(-n\gamma^2) \prod_{i=1}^n \frac{\gamma^{2x_i}}{x_i!} \right) = -n\gamma^2 + 2\log(\gamma) \sum_{i=1}^n x_i - \sum_{i=1}^n \log(x_i!)$$
 1 P

Ableiten nach γ liefert

$$M'_x(\gamma) = -2n\gamma + \frac{2\sum_{i=1}^n x_i}{\gamma}$$
 1 P

mit einer Nullstelle bei $\widehat{\gamma}(x) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i}$. 1 P Durch Bestimmen der zweiten Ableitung kann nachgewiesen werden, dass $\widehat{\gamma}(x)$ ein Maximum ist und folglich einen Maximum-Likelihood-Schätzer liefert.

b) Bei der durch f_{γ} definierten Verteilung handelt es sich um eine Poisson-Verteilung mit Parameter γ^2 . Der Erwartungswert ist daher γ^2 (Beispiel 12.5). 1 P Bei der Momenten-Methode wird angenommen, dass γ durch $m_1(\gamma)$ ausgedrückt werden kann. Als Schätzgleichung ergibt sich

$$m_1(\gamma) = \hat{m}_1(x).$$

Einsetzen von $m_1(\gamma) = \gamma^2$ und der Definition des ersten Stichprobenmoments $\hat{m}_1(x) = \frac{1}{n} \sum_{j=1}^n x_j$ liefert die Schätzgleichung

$$\gamma^2 = \frac{1}{n} \sum_{j=1}^n x_j,$$

Auflösen nach γ liefert den Momentenschätzer

$$\widehat{\gamma}_M(x) = \sqrt{\frac{1}{n} \sum_{j=1}^n x_j}, \quad \boxed{1P}$$

welcher hier identisch zum Maximum-Likelihood-Schätzer ist.

- c) Da $X_i \sim \text{Po}(\gamma^2)$ liefert das Additionsgesetz für die Poisson-Verteilung (Beispiel 13.7) $\sum_{i=1}^n X_1 \sim \text{Po}(n\gamma^2).$
- d) Nach Satz 17.16 sind sowohl $\frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X}_n)^2$ als auch $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X}_n)^2$ konsistente Schätzfolgen für die Varianz bei beliebiger Verteilungsannahme. $\boxed{1 \text{ P} + 1 \text{ P}}$