

Institut für Stochastik

PD Dr. Steffen Winter M. Sc. Sebastian Höfer

Nachname:
Vorname:
MatrNr.:

Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik für die Fachrichtungen Maschinenbau und Informatik

Datum: 31. Juli 2023

Bearbeitungszeit: 90 Minuten

- Zugelassene Hilfsmittel: Ein handbeschriebenes DIN A4 Blatt, Taschenrechner (nicht vernetzbar und nicht programmierbar), Wörterbuch.
- Bei dieser Klausur werden nur diejenigen Ergebnisse gewertet, die in die vorgesehenen Kästchen eingetragen sind! Eine Begründung bzw. Herleitung der Ergebnisse ist nicht erforderlich, sofern nicht explizit gefordert.
- Vereinfachen Sie Ergebnisse so weit wie möglich. Geben Sie Ergebnisse so exakt wie möglich an, z.B. als Bruch. Runden Sie **Endergebnisse** auf 4 **Nachkommastellen** genau, wenn nicht anders angegeben.
- Hinreichend zum Bestehen der Klausur sind 20 Punkte.

Viel Erfolg!

Aufgabe	1 (10 P)	2 (10 P)	3 (12 P)	4 (9 P)	5 (9 P)	$\sum (50 \text{ P})$
Punkte						
Korrektor						

bestanden	nicht bestanden	Note

Verteilungsfunktion $\Phi(x)$ der Standard – Normalverteilung $\mathbf{N}(0,1)$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7793	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Aufgabe 1 (10 Punkte)

(a) Kreuzen Sie die jeweils zutreffende Aussage an. Dabei ist jeweils nur **genau** ein Kreuz pro Teilaufgabe zu setzen.

1. f_1 und f_2 seien zwei Wahrscheinlichkeitsdichten auf \mathbb{R} . Dann ist folgende Funktion						
ebenfalls stets eine Wahrscheinlichkeitsdichte auf \mathbb{R} :						
$rac{1}{2}(f_1-f_2)$						
$rac{1}{2}(f_1+f_2)$						
$rac{1}{2}(f_1*f_2)$						
$rac{1}{2}(f_1\cdot f_2)$						
2. Auf einem beliebigen Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ gilt für zwei Ereignisse						

2. Auf einem beliebigen Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ gilt für zwei Ereignisse $A, B \subset \Omega$ mit $\mathbb{P}(A) > 0$ und $\mathbb{P}(B) > 0$ stets:

$$\mathbb{P}(A) + \mathbb{P}(B) = \mathbb{P}(A \cup B) - \mathbb{P}(A \cap B)$$

$$\mathbb{P}(B) \cdot \mathbb{P}(A|B) = \mathbb{P}(A \cap B)$$

$$\mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(A \cap B)$$

$$\mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(A \cup B)$$

- 3. Die Verteilungsfunktion einer reellen Zufallsvariablen ist ${\bf stets}$...
 - ... streng monoton wachsend.
 - ... strikt positiv.
 - ... stetig.
 - ... durch 1 beschränkt.
- 4. Es seien X und Y zwei unabhängige reelle Zufallsvariablen auf einem gemeinsamen Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$. Dann gilt **stets** ...
 - ... $\mathbb{P}(X \in [a, \infty)) = \mathbb{P}(Y \in [a, \infty))$ für jedes $a \in \mathbb{R}$.
 - ... $\mathbb{P}(X \in [a, \infty)) \neq \mathbb{P}(Y \in [a, \infty))$ für jedes $a \in \mathbb{R}$.
 - ... $\mathbb{P}(X \in [a, \infty)) \cdot \mathbb{P}(Y \in [a, \infty)) = \mathbb{P}(\min(X, Y) \in [a, \infty))$ für jedes $a \in \mathbb{R}$.
 - ... $\mathbb{P}(X \in [a, \infty)) \cdot \mathbb{P}(Y \in [a, \infty)) = \mathbb{P}(\max(X, Y) \in [a, \infty))$ für jedes $a \in \mathbb{R}$.
- 5. Ein Schätzer $\hat{\vartheta}$ für einen unbekannten Parameter $\vartheta>0$ ist stets erwartungstreu, falls für jedes $\vartheta>0$ gilt ...
- $\dots \mathbb{E}[\hat{\vartheta}] = 0.$
- ... $\operatorname{Var}_{\vartheta}(\hat{\vartheta}) = \vartheta$.
- ... $\mathbb{E}_{\vartheta}[\hat{\vartheta}^2] \operatorname{Var}_{\vartheta}(\hat{\vartheta}) = \vartheta^2$.
- ... $\mathbb{E}_{\vartheta}[\hat{\vartheta}^2] = \vartheta^2$.

1.	Geben Sie die Anzahl k aller	Möglichkeiten	an,	Ihre 6	Lieblingsbücher	nebeneinander	in
	einem Regal aufzustellen.						

$$k =$$

2. Geben Sie die Anzahl ℓ aller Möglichkeiten an, Ihre 6 Lieblingsbücher auf einen grünen und einen roten Karton aufzuteilen. (Ein Karton kann auch leer sein.)

$$\ell =$$

3. Der Zufallsvektor (X, Y) habe die gemeinsame Dichte

$$f_{X,Y}(x,y) = \frac{3}{16}xy^2 \cdot \mathbb{1}_{[0,2]^2}(x,y).$$

Geben Sie die Randdichte f_X von X an.

$$f_X(x) =$$

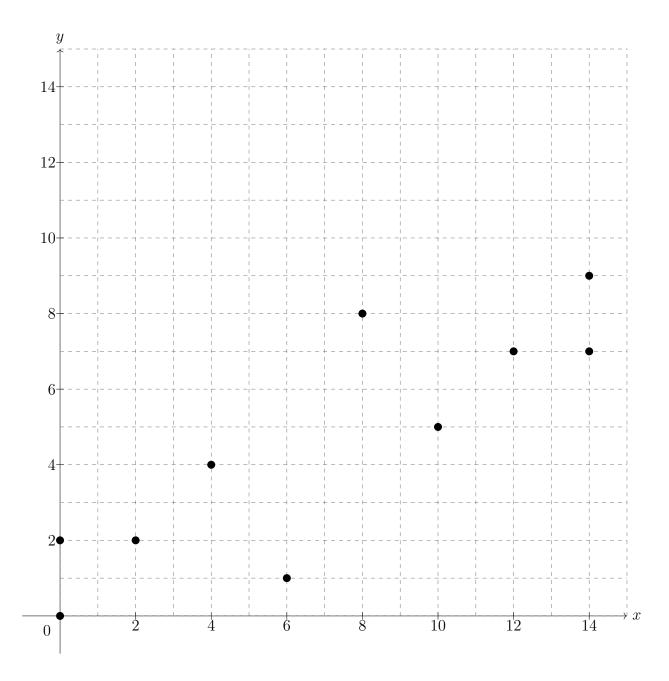
4. Für ein Ereignis A mit Wahrscheinlichkeit $\mathbb{P}(A) = 0.5$ sei $X := \mathbb{1}_A$. Geben Sie die Varianz von X^2 an.

$$Var(X^2) =$$

5. Es sei $(X_i)_{i\in\mathbb{N}}$ eine Folge reellwertiger Zufallsvariablen, die stochastisch gegen eine Zufallsvariable X konvergieren, d.h., es gelte $X_n \stackrel{\mathbb{P}}{\to} X$ für $n \to \infty$. Konvergiert dann die Folge $(\frac{1}{2}X_n)_{n\in\mathbb{N}}$ stochastisch? Geben Sie im Fall der Konvergenz den Grenzwert an. Anderenfalls geben Sie "konvergiert nicht" an.

Aufgabe 2 (10 Punkte)

Das folgende Schaubild zeigt die Stichprobe $(x_1, y_1), ..., (x_{10}, y_{10}).$



(a) Geben Sie das Stichprobenmittel \bar{y} , das untere Stichprobenquartil $\tilde{y}_{1/4}$ und den Stichprobenmedian \tilde{y} von (y_1,\ldots,y_{10}) an:

$$\bar{y} =$$

$$\tilde{y}_{1/4} =$$

$$\tilde{y} =$$

(b) **Zeichnen** Sie die Regressionsgerade $f(x) = a^* + b^*x$ des Datensatzes in das obige Koordinatensystem ein. Sie können dabei voraussetzen, dass die Regressionsgerade die Steigung $\frac{1}{2}$ besitzt. Geben Sie hier zusätzlich a^* und b^* an:

$$a^* = \boxed{ \qquad \qquad b^* = \boxed{ }}$$

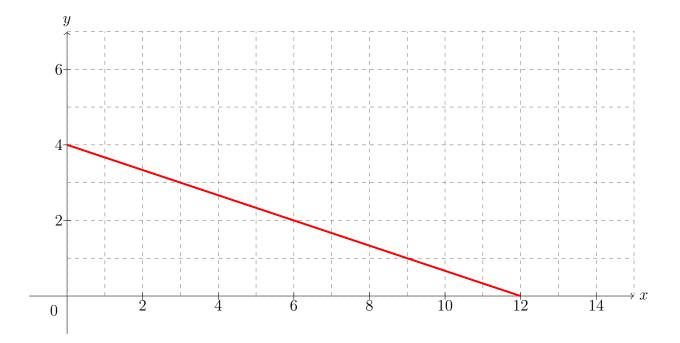
(c) **Zeichnen** Sie einen weiteren Datenpunkt (x_{11}, y_{11}) in das obige Koordinatensystem so ein, dass sich die Regressionsgerade nicht verändert. Geben Sie den eingezeichneten Punkt zusätzlich hier an:

$$(x_{11}, y_{11}) =$$

(d) Unten sehen Sie ein weiteres Schaubild mit einer Regressionsgeraden, allerdings sind die Stichprobenpunkte nicht eingezeichnet. Es ist Ihnen lediglich bekannt, dass für die Stichprobenvarianzen von x und y gilt $s_x^2 = s_y^2 = 2$.

Bestimmen Sie den empirischen Korrelationskoeffizienten r_{xy} :

$$r_{xy} =$$



Aufgabe 3 (12 Punkte)

Es seien X eine Zufallsvariable mit Werten in $\{-1,0,1\}$ und Y eine Zufallsvariable mit Werten in $\{0,1,3\}$. Dabei seien die folgenden Wahrscheinlichkeiten bekannt:

$$\mathbb{P}(X = -1) = \mathbb{P}(Y = 0) = 0.3, \quad \mathbb{P}(X = 0) = \mathbb{P}(Y = 1) = 0.5, \quad \mathbb{P}(X = 1) = \mathbb{P}(Y = 3) = 0.2.$$

(a) Die folgende Tabelle gibt die gemeinsame Verteilung $\mathbb{P}(X=i,Y=j)$ des Zufallsvektors (X,Y) für die Werte i=-1,0,1 und j=0,1,3 an. Ergänzen Sie die fünf fehlenden Einträge.

	j = 0	j = 1	j = 3
i = -1	0.1	0.05	
i = 0	0.15		
i = 1			0.05

(b) Berechnen Sie die Erwartungswerte $\mathbb{E}[X]$ und $\mathbb{E}[Y]$, die Varianzen $\mathrm{Var}(X)$ und $\mathrm{Var}(Y)$ sowie die Kovarianz $\mathrm{Cov}(X,Y)$.

$\mathbb{E}[X] =$	
Var(X) =	
Cov(X, Y) =	

$$\mathbb{E}[Y] = \boxed{$$

$$Var(Y) = \boxed{}$$

(c) Geben Sie die bedingte Wahrscheinlichkeit $\mathbb{P}(X=1|Y=1)$ an.

$$\mathbb{P}(X=1|Y=1) = \boxed{}$$

(d) Sind X und Y stochastisch unabhängig? Begründen Sie!

_			

In einer Urne befinden sich 15 Kugeln, davon sind 6 rot und 9 schwarz. Nun werden nacheinander Kugeln gezogen und nach jedem Zug wieder zurück in die Urne gelegt. Für $i=1,2,\ldots$ sei das Ereignis A_i definiert durch

$$A_i :=$$
 "die i -te gezogene Kugel ist rot"

und die Zufallsvariablen X und Y seien gegeben durch

$$X := \sum_{i=1}^{15} \mathbb{1}_{A_i} \text{ und } Y := \sum_{i=1}^{15} \mathbb{1}_{A_i^c}.$$

(e) Bestimmen Sie die Wahrscheinlichkeit $\mathbb{P}(A_2|A_1 \cup A_2)$.

$$\mathbb{P}(A_2|A_1 \cup A_2) = \boxed{}$$

(f) Geben Sie die Verteilung von X an.

$$X \sim$$

(g) Bestimmen Sie die Verteilung von X + Y.

(h) Die Zufallsvariable Z gebe an, wie oft eine schwarze Kugel gezogen wird, bevor die erste rote Kugel gezogen wird. Welche Verteilung hat Z?

Aufgabe 4 (9 Punkte)

Ein Profi und ein Amateur werfen jeweils einmal auf eine Dartscheibe. Der Mittelpunkt der Dartscheibe sei der Ursprung eines kartesischen Koordinatensystems. Die Koordinaten der Auftreffpunkte (x_1, y_1) (Amateur) und (x_2, y_2) (Profi) werden als Realisierungen von unabhängigen Zufallsvariablen X_1, X_2, Y_1, Y_2 modelliert, wobei $X_1, Y_1 \sim N(0, 4)$ und $X_2, Y_2 \sim N(0, 1)$.

(a) Berechnen Sie die folgende Wahrscheinlichkeit.

$$\mathbb{P}(|X_1 - 1| \ge 1) =$$

(b) Welche Verteilung besitzt die Zufallsvariable $Z := X_1 - X_2$?

$$Z \sim$$

(c) Bestimmen Sie die folgenden Erwartungswerte.

$$\mathbb{E}[Z] =$$
 $\mathbb{E}[Z^2] =$

(d) Bestimmen Sie die Verteilungsfunktion F der Zufallsvariablen $(X_1-X_2)^2$.

$$F(x) =$$

(e) Bestimmen Sie die folgenden Korrelationen.

$$Corr(Y_1 - Y_2, Y_1 - Y_2) =$$

$$Corr(X_1 - X_2, Y_1 - Y_2) =$$

Aufgabe 5 (9 Punkte)

Seien $X, X_1, \dots, X_n, \dots$ unabhängige identisch verteilte Zufallsvariablen mit der Dichte

$$f_{\vartheta}(t) = \begin{cases} \frac{1}{\vartheta} \cdot \exp\left(-\frac{t}{\vartheta}\right), & t > 0, \\ 0, & t \le 0, \end{cases}$$

für einen unbekannten Parameter $\vartheta > 0$.

(a) Berechnen Sie für $\vartheta=1$ die folgende Wahrscheinlichkeit:

$$\mathbb{P}_1(-1 \le X \le 1) = \boxed{}$$

(b) Berechnen Sie für $\vartheta=1$ die folgende Varianz:

$$\operatorname{Var}_1(X^2) =$$

Hinweis: Sie können ohne Beweis verwenden, dass $\int_0^\infty x^k e^{-x} dx = k!$ gilt.

(c) Der unbekannte Parameter ϑ soll basierend auf einer unabhängigen Stichprobe $x=(x_1,\ldots,x_n)$ mit Hilfe der Maximum-Likelihood-Methode geschätzt werden. Dabei können Sie voraussetzen, dass $x_i>0$ für alle $i=1,\ldots,n$ gilt.

Bestimmen Sie die Likelihood-Funktion $L_x(\vartheta)$, berechnen Sie die Loglikelihood-Funktion $\ell_x(\vartheta)$ und deren Ableitung $\ell_x'(\vartheta)$. Vereinfachen Sie die Ausdrücke so weit wie möglich.

(d) Geben Sie einen Maximum-Likelihood-Schätzer $\widehat{\vartheta}(x)$ für ϑ an.

$$\widehat{\vartheta}(x) =$$

(e) Bestimmen Sie den Erwartungswert von $\widehat{\vartheta}(X_1,\ldots,X_n)$ für Ihren in Teil (d) bestimmten Schätzer $\widehat{\vartheta}.$

$$\mathbb{E}_{\vartheta}[\widehat{\vartheta}(X_1,\ldots,X_n)] = \boxed{}$$

(f) Berechnen Sie den mittleren quadratischen Fehler von $\widehat{\vartheta}(X_1,\ldots,X_n)$.

$$\mathbb{E}_{\vartheta}[|\widehat{\vartheta}(X_1,\ldots,X_n)-\vartheta|^2] =$$

Hinweis: Sie können ohne Beweis verwenden, dass $\mathrm{Var}(X)=\vartheta^2$ gilt.