

Institut für Stochastik

Prof. Dr. Mathias Trabs Dr. Celeste Mayer

> Lösungsvorschlag Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik für die Fachrichtungen Informatik/ Maschinenbau

Verteilungsfunktion $\Phi(x)$ der Standard – Normalverteilung $\mathcal{N}(0,1)$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7793	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

${\bf Aufgabe~1} \qquad (10~{\rm Punkte})$

a) Kreuzen Sie die jeweils zutreffende Aussage an. Dabei ist jeweils nur genau ein Kreuz pro Teilaufgabe zu setzen.

1. In einem diskreten Wahrscheinlichkeitsraum (Ω,\mathbb{P}) kann	
nur \emptyset und Ω eine Wahrscheinlichkeit zugeordnet werden.	
nur allen Elementarereignissen eine Wahrscheinlichkeit zugeordnet werden.	
nur allen endlichen Teilmengen von Ω eine Wahrscheinlichkeit zugeordnet werden.	
jeder Teilmenge von Ω eine Wahrscheinlichkeit zugeordnet werden.	X
2. Die Sensitivität eines Tests auf eine Hypothese ist die bedingte Wahrscheinlichkeit, dass	
der Test positiv ist und sein Ergebnis stimmt.	X
der Test negativ ist und sein Ergebnis nicht stimmt.	
der Test positiv ist und sein Ergebnis nicht stimmt.	
der Test negativ ist und sein Ergebnis stimmt.	
3. Es sei $X \colon \Omega \to S$ eine Zufallsvariable auf einem diskreten Wahrscheinlichkeitsraum (Ω, \mathbb{P}) . Dann gilt für alle $A \subseteq S$:	
$\mathbb{P}^X(A) = \mathbb{P}(A \in X)$	
$\mathbb{P}^X(A) = \mathbb{P}(X \in A)$	X
$\mathbb{P}^X(A) = \mathbb{P}(X(A))$	
$\mathbb{P}^X(A) = \mathbb{P}(A(X))$	
4. Eine Verteilungsfunktion ist nicht immer	
nicht-negativ.	
monoton wachsend.	
stetig.	X
durch 1 beschränkt.	
5. Es seien X,Y zwei Zufallsvariablen auf dem selben Wahrscheinlichkeitsraum. Dann sind X und Y	
immer unabhängig, wenn sie unkorreliert sind.	
immer unkorreliert, wenn sie unabhängig sind.	X
nie unabhängig, wenn sie unkorreliert sind.	
nie unkorreliert, wenn sie unabhängig sind.	

- b) Füllen Sie folgende Lücken aus.
 - 1. Die Anzahl der Möglichkeiten eine zufällige n-stellige Zahl aus den Ziffern 1 bis 9 zu ziehen, beträgt für $n \in \mathbb{N}$:

 9^n

2. Ist $p_n \in (0,1)$ und $n \in \mathbb{N}$ so, dass $\lim_{n\to\infty} np_n = \mu$ für ein $\mu \in \mathbb{R}$, dann konvergiert $\operatorname{Bin}_{(n,p_n)}$ für $n\to\infty$ gegen die Verteilung:

 $Poiss(\mu)$

3. Es sei X eine Zufallsvariable mit endlichem ersten und zweiten Moment. Dann folgt aus $\mathbb{P}(X=5)=1,$ dass

 $Var(X) = \boxed{ 0 }$

4. Es seien $(X_i)_{i\in\mathbb{N}}$ reellwertige Zufallsvariablen mit endlichem Erwartungswert $\mu=\mathbb{E}[X_i]$ und $\mathrm{Var}(X_i)=1$ für alle $i\in\mathbb{N}$. Die stochastische Konvergenz von $\frac{1}{n}\sum_{i=1}^n X_i$ gegen μ für $n\to\infty$ folgt, wenn:

 X_i unabhängig/ unkorreliert

5. Das Risiko eines erwartungstreuen Schätzers $\widehat{\vartheta}$ eines unbekannten Parameters $\vartheta \in \mathbb{R}$ mit $\mathrm{Var}_{\vartheta}(\widehat{\vartheta})=1$ beträgt

 $\mathbb{E}_{\vartheta}\big[(\widehat{\vartheta}-\vartheta)^2\big] = \boxed{1}$

Lösung:

- a) klar.
- b) 1. Urnenmodell mit 9 Kugeln und n Ziehungen mit Reihenfolge und mit Zurücklegen.
- 2. Aussage des Poissonschen Grenzwertsatz.
- 3. Klar.
- 4. Aussage des schwachen Gesetzes großer Zahlen.
- 5. Der gesuchte Erwartungswert entspricht der Varianz unter gegebenen Voraussetzungen.

Aufgabe 2 (10 Punkte)

a) In einer Datenbank finden Sie einen zwei-dimensionalen Datensatz mit dem Sie Ihre Datenanalyse-Techniken üben möchten. Sie haben:

j	1	2	3	4	5	6	7	8	9	10	11	12
$\overline{x_j}$	1	2	4	4.7	6	7.5	8	11	13	13.5	14	14.3
y_i	0.8	1.5	3	3.4	2.7	6	2.8	4	4.5	4.8	5.2	6

Desweiteren können Sie ohne Überprüfung annehmen:

$$\overline{x} = 8.25$$
, $s_x^2 = 23.2118$, $r_{x,y} = 0.8229$, $\frac{1}{11} \sum_{j=1}^{11} y_j = 3.5182$, $s_y^2 = 2.7639$.

1. Geben Sie das arithmetische Mittel \bar{y} , den empirischen Median $\tilde{y}_{1/2}$ und die Standardabweichung s_y von (y_1,\ldots,y_{12}) an: (1+2+1P)

$$\bar{y} = \boxed{ 3.725 } \qquad \tilde{y}_{1/2} = \boxed{ 3.7 } \qquad s_y = \boxed{ 1.6625 }$$

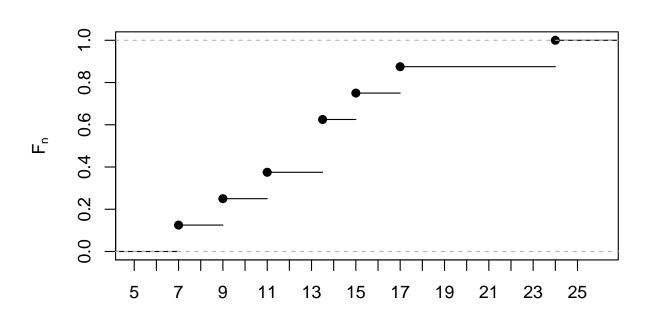
2. Geben Sie das $\alpha = 0.05$ -getrimmte Stichprobenmittel $\bar{y}_{0.05}$ von (y_1, \dots, y_{12}) an. (1P)

$$\bar{y}_{0.05} = \boxed{3.725 = \overline{y}}$$

3. Bestimmen Sie die Koeffizienten der Regressionsgeraden $f(x) = a^* + b^*x$ des Datensatzes. (2P)

$$a^* = \boxed{ 1.3823 } b^* = \boxed{ 0.284 }$$

b) An anderer Stelle finden Sie nun die empirische Verteilungsfunktion eines (anderen) eindimensionalen Datensatzes. Dabei ist bekannt, dass genau eine Beobachtung mit dem Wert 11 vorliegt.



1.	Wie g	groß	ist	die	Stich	probe,	die l	hier	betrachtet	wurde?	(1P)
							n =		8		

2. Was ist die Spannweite der Stichprobe? (2P)

Spannweite =	17

Lösungsvorschlag:

a) 1. Wir erhalten für das arithmetische Mittel

$$\overline{y} = \frac{1}{11} \left(11 \cdot \frac{1}{11} \sum_{j=1}^{11} y_j + y_{12} \right) = 3.725.$$

Dasselbe Ergebnis erhalten wir auch, wenn wir alle y-Werte aufsummieren und durch 12 teilen.

Für den Median benötigen wir den 6. und 7. kleinsten Wert, der y-Stichprobe. Das sind: $y_4 = 3.4$ und $y_8 = 4$. Wir erhalten also

$$\tilde{y}_{1/2} = \frac{1}{2} (y_{(6)} + y_{(7)}) = \frac{1}{2} (3.4 + 4) = 3.7.$$

Die Standardabweichung erhalten wir durch $s_y = \sqrt{s_y^2} = 1.6625$.

- 2. Da $[0.05 \cdot 12] = [0.6] = 0$ entspricht das α -getrimmte Mittel dem arithmetischen Mittel.
- 3. Wir haben $b^* = r_{xy} \cdot \frac{s_y}{s_x} = 0.284$ und damit $a^* = \overline{y} b^* \cdot \overline{x} = 1.3823$.
- b) 1. Nach Aufgabenstellung haben wir nur eine Beobachtung zum Wert 11, d.h. die Höhe des Sprungs an der Stelle 11 ist 1/n. Offenbar ist damit n=8. Alternativ kann man die Sprünge im Schaubild zählen und stellt fest, dass es 7 Sprünge gibt, wobei bei 13.5 ein Sprung mit doppelter Höhe auftritt. Da wir bei normaler Höhe genau eine Beobachtung vorliegen haben (siehe Aufgabenstellung) haben wir 8 Datenpunkte, also n=8.
 - 2. Der kleinste Wert ist der Wert bei dem der erste Sprung auftritt, also $z_{(1)} = 7$, der größte der bei dem der letzte Sprung auftritt, also $z_{(8)} = 24$ (siehe Schaubild). Damit ist die Spannweite 24 7 = 17.

Aufgabe 3 (10 Punkte)

Gegeben seien zwei Zufallsvariablen X,Y, deren gemeinsame Verteilung durch die unvollständige Tabelle

$k \over j$	-1	0	1	2	$\boxed{\mathbb{P}(Y=j)}$
-1	$\frac{1}{24}$	$\frac{1}{8}$		0	$\frac{11}{48}$
0	$\frac{1}{8}$		$\frac{1}{16}$		
1					$\frac{7}{12}$
$\boxed{\mathbb{P}(X=k)}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	

festgelegt ist.

- a) Vervollständigen Sie die Tabelle. (2P)
- b) Um was für eine Verteilung handelt es sich bei der Verteilung von X? (1P)

$$X \sim$$
 Gleichverteilung auf $\{-1, 0, 1, 2\}$

c) Berechnen Sie: (1+1P)

$$\mathbb{E}[Y] = \boxed{\frac{17}{48} \approx 0.3542} \qquad \mathbb{P}(Y \in (0,2)) \qquad = \boxed{\frac{7}{12}}$$

d) Berechnen Sie: (1+2P)

$$\mathbb{P}(X = -1|Y = 1) = \boxed{\frac{1}{7}}$$

$$\mathbb{P}(X + Y = 1) = \boxed{\frac{3}{16} = 0.1875}$$

e) Sind X und Y unabhängig? Begründen Sie Ihre Antwort! (1P)

Nein, Begründung siehe im Vorschlag.

f) Betrachten Sie nun unabhängige und identisch verteilte X_1, \ldots, X_n , wobei X_i dieselbe Verteilung wie X hat und $\text{Var}(X) = \frac{5}{4}$. Berechnen Sie den folgenden Grenzwert: (1P)

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(X_i - \frac{1}{2}\right) \le \frac{7}{8}\right) = \boxed{0.7823}$$

Lösungsvorschlag:

a) Wir haben:

k j	-1	0	1	2	$\boxed{\mathbb{P}(Y=j)}$
-1	$\frac{1}{24}$	$\frac{1}{8}$	$\frac{1}{16}$	0	$\frac{11}{48}$
0	$\frac{1}{8}$	0	$\frac{1}{16}$	0	$\frac{3}{16}$
1	$\frac{1}{12}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{7}{12}$
$\boxed{\mathbb{P}(X=k)}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	1

- b) X ist gleichverteilt auf der Menge $\{-1,0,1,2\}$, da jedes Element der Menge mit der gleichen Wahrscheinlichkeit angenommen wird.
- c) Für den Erwartungswert von Y haben wir

$$E[Y] = \frac{11}{48} \cdot -1 + \frac{7}{12} = \frac{17}{48} \approx 0.3542.$$

Weiter ist

$$\mathbb{P}(Y \in (0,2)) = \mathbb{P}(Y = 1) = \frac{7}{12}.$$

d) Es ist:

$$\mathbb{P}(X = -1|Y = 1) = \frac{\mathbb{P}(X = -1, Y = 1)}{\mathbb{P}(Y = 1)} = \frac{\frac{1}{12}}{\frac{7}{12}} = \frac{1}{7}.$$

Weiter ist:

$$\mathbb{P}(X+Y=1) = \mathbb{P}(X=0,Y=1) + \mathbb{P}(X=1,Y=0) + \mathbb{P}(X=2,Y=-1)$$
$$= \frac{1}{8} + \frac{1}{16} + 0 = \frac{3}{16} = 0.1875.$$

e) Die Zufallsvariablen sind nicht unabhängig, da zum Beispiel

$$P(X = 2, Y = -1) = 0 \neq \frac{11}{192} = \mathbb{P}(X = 2)\mathbb{P}(Y = -1)$$

gilt.

f) Da die Standardabweichung von X gerade $\sqrt{\frac{5}{4}}$ ist, ist der gesuchte Wert nach dem zentralen Grenzwertsatz gerade

$$\Phi(\sqrt{\frac{5}{4}}^{-1} \cdot \frac{7}{8}) = \Phi(0.7826) = 0.7823.$$

Aufgabe 4 (10 Punkte)

Betrachten Sie drei unabhängige normalverteilte Zufallsvariablen $X \sim N(0,1), Y \sim N(-1,4)$ und Z. Dabei habe Z einen Erwartungswert von 1 und eine Standardabweichung von 2.

a) Wie sind die Zufallsvariablen Z und W := X - Y + Z verteilt? (3P)

$$Z \sim N(\boxed{1,4}), \quad W \sim \boxed{N(2,9)}$$

b) Berechnen Sie die Korrelation von Y und W. (2P)

$$Corr(Y, W) = \boxed{ -\frac{2}{3}}$$

c) Geben Sie die Wahrscheinlichkeit dafür an, dass das Maximum von X und Y größer als 1/2 ist. Drücken Sie dafür zuerst $\mathbb{P}(\max\{X,Y\} > 1/2)$ mithilfe der Verteilungsfunktion Φ der Standardnormalverteilung aus: (2P)

$$\mathbb{P}(\max\{X,Y\} > 1/2) = \boxed{1 - \Phi(1/2)\Phi(3/4)}$$

Berechnen Sie nun die gesuchte Wahrscheinlichkeit explizit:

$$\mathbb{P}(\max\{X,Y\} > 1/2) = \boxed{0.4652}$$

d) Geben Sie das 0.9861-Quantil $t_{X,0.9861}$ von X und das 0.6103-Quantil $t_{Y,0.6103}$ von Y an. Es genügt, wenn Sie die Ergebnisse auf 2 Nachkomma-Stellen genau angeben. (3P)

$$t_{X,0.9861} = \boxed{2.20}$$

$$t_{Y,0.6103} = \boxed{ -0.44}$$

Lösungsvorschlag:

- a) Verteilung von Z: Die gesuchten Parameter von Z sind der Erwartungswert (1 nach Aufgabenstellung) und die Varianz von Z ($Var(Z) = 2^2$ nach Aufgabenstellung). Verteilung von W: Da wir 3 unabhängige Normalverteilungen addieren/subtrahieren erhalten wir eine normalverteilte Zufallsvariabe. Für den Erwartungswert von W ergibt sich $\mathbb{E}[W] = \mathbb{E}[X] \mathbb{E}[Y] + \mathbb{E}[Z] = 2$, für die Varianz Var(W) = Var(X) + Var(Y) + Var(Z) = 9.
- b) Es ist

$$Corr(Y, W) = \frac{Cov(Y, W)}{\sqrt{Var(Y)Var(W)}} = \frac{Cov(Y, X - Y + Z)}{\sqrt{4 \cdot 9}} = -\frac{Var(Y)}{6} = -\frac{2}{3}.$$

c) Es gilt wegen der Unabhängigkeit von X und Y

$$\begin{split} \mathbb{P}(\max\{X,Y\} > 1/2) = & 1 - \mathbb{P}(\max\{X,Y\} \le 1/2) \\ = & 1 - \mathbb{P}(X \le 1/2) \mathbb{P}(Y \le 1/2) \\ = & 1 - \Phi(\frac{1}{2}) \cdot \Phi(\frac{3}{4}) \\ = & 1 - 0.6915 \cdot 0.7734 = 0.4652. \end{split}$$

d) Wir erhalten das gesuchte Quartil von X indem wir in der Tabelle nach dem Wert 0.9861 suchen und schauen, welcher Wert auf diesen Wert abgebildet ist (beachte, dass X standardnormalverteilt ist).

Für das Quartil von Y betrachten wir:

$$\mathbb{P}(Y \le t_{Y,0.6103}) = 0.6013$$

$$\iff \mathbb{P}(X \le \frac{t_{Y,0.6103} + 1}{2}) = 0.6103$$

$$\iff \Phi(\frac{t_{Y,0.6103} + 1}{2}) = 0.6103$$

$$\iff \frac{t_{Y,0.6103} + 1}{2} = 0.28$$

$$\iff t_{Y,0.6103} = -0.44.$$

Aufgabe 5 (10 Punkte)

Betrachten Sie die Funktion

$$f_{\vartheta}(x) = \frac{c}{\vartheta} \left(e^{-x/\vartheta} \mathbb{1}_{\{x \ge 0\}} + e^{2x/\vartheta} \mathbb{1}_{\{x < 0\}} \right), \qquad x \in \mathbb{R},$$

mit unbekanntem Parameter $\vartheta>0$ und einer von ϑ unabhängigen Konstante c>0.

a) Berechnen Sie den Erwartungswert einer Exponentialverteilung mit Parameter ϑ . (1P)

$$\vartheta$$

Hinweis: Die Dichte einer Exponentialverteilung mit Parameter ϑ ist

$$p(x) = \frac{1}{\vartheta} e^{-x/\vartheta} \mathbb{1}_{\{x \ge 0\}}, \quad x \in \mathbb{R}.$$

b) Bestimmen Sie c so, dass f_{ϑ} eine Wahrscheinlichkeitsdichte ist. (1P)

$$c = \boxed{ 2/3}$$

Hinweis: Falls Sie c nicht berechnen können, dann verwenden Sie im Folgenden den (nicht korrekten) Wert c = 1.

c) Basierend auf der unabhängigen Stichprobe $x = (x_1, ..., x_n)$ soll nun der unbekannte Parameter ϑ mit Hilfe der Momentenmethode geschätzt werden. Bestimmen Sie den Erwartungswert $m_1(\vartheta)$ der durch f_{ϑ} definierten Verteilung. (2P)

$$m_1(\vartheta) = \frac{1}{2}\vartheta$$

Bestimmen Sie den Momentenschätzer $\widetilde{\vartheta}(x)$ für ϑ . (1P)

$$\widetilde{\vartheta}(x) = \frac{\frac{2}{n} \sum_{j=1}^{n} x_j}{2}$$

d) Bestimmen Sie den Erwartungswert von $\widetilde{\vartheta}(X_1,\ldots,X_n).(1P)$

$$\mathbb{E}_{\vartheta}[\widetilde{\vartheta}(X_1,\ldots,X_n)] = \emptyset$$

e) Der unbekannte Parameter ϑ soll basierend auf einer unabhängigen Stichprobe $x = (x_1, \ldots, x_n)$ mit Hilfe der Maximum-Likelihood-Methode geschätzt werden.

Bestimmen Sie die Likelihood-Funktion $L_x(\vartheta)$, berechnen Sie die Loglikelihood-Funktion $\ell_x(\vartheta)$ und deren Ableitung $\ell_x'(\vartheta)$. (3P)

$$L_{x}(\vartheta) = \prod_{j=1}^{n} f_{\vartheta}(x_{j}) = \left(\frac{2}{3\vartheta}\right)^{n} \prod_{j=1}^{n} \left(e^{-x_{j}/\vartheta} \mathbb{1}_{\{x_{j} \geq 0\}} + e^{2x_{j}/\vartheta} \mathbb{1}_{\{x_{j} < 0\}}\right)$$

$$\ell_{x}(\vartheta) = n \log(2) - n \log(3) - n \log(\vartheta) + \sum_{j=1}^{n} \left(\frac{2x_{j}}{\vartheta} \mathbb{1}_{\{x_{j} < 0\}} - \frac{x_{j}}{\vartheta} \mathbb{1}_{\{x_{j} \geq 0\}}\right)$$

$$\ell'_{x}(\vartheta) = \sum_{j=1}^{n} \left(\frac{x_{j}}{\vartheta^{2}} \mathbb{1}_{\{x_{j} \geq 0\}} - 2\frac{x_{j}}{\vartheta^{2}} \mathbb{1}_{\{x_{j} < 0\}}\right) - \frac{n}{\vartheta}$$

Geben Sie einen Maximum-Likelihood-Schätzer $\widehat{\vartheta}(x)$ für ϑ an. (1P)

$$\widehat{\vartheta}(x) = \frac{1}{n} \sum_{j=1}^{n} \left(x_j \mathbb{1}_{\{x_j \ge 0\}} - 2x_j \mathbb{1}_{\{x_j < 0\}} \right)$$

Lösung:

a) Der exakte Wert ist in der Vorlesung genannt worden. Natürlich lässt sich der Erwartungswert einer ZV X mit Dichte p auch über

$$\mathbb{E}[X] = \int_0^\infty x \frac{1}{\vartheta} e^{-x/\vartheta} dx$$

berechnen. Hierbei kann man entweder partielle Integration oder Substitution nutzen.

b) c kann direkt über die Gleichung

$$1 = c \left(\int_0^\infty \frac{1}{\vartheta} e^{-x/\vartheta} dx + \int_{-\infty}^0 \frac{1}{\vartheta} e^{2x/\vartheta} dx \right),$$

bestimmt werden. Bemerke, dass für c=2/3 auch $f_{\vartheta}\geq 0$ gilt.

c) Der Erwartungswert ergibt sich durch

$$m_1(\vartheta) = \frac{2}{3} \cdot \vartheta + \frac{2}{3} \cdot \frac{1}{2} \cdot (-\frac{\vartheta}{2}) = \frac{1}{2}\vartheta.$$

Diesen Zusammenhang sehen wir direkt über: Seien X eine ZV mit f_{ϑ} , $Y_1 \sim Exp(\vartheta)$, $Y_2 \sim Exp(\vartheta/2)$. Dann ist X in Verteilung gleich wie

$$\frac{2}{3}Y_1 - \frac{1}{2} \cdot \frac{2}{3}Y_2.$$

Der gesuchte Erwartungswert ergibt sich nun aus der Linearität des Erwartungswert. Alternativ kann man natürlich auch hier das passende Integral

$$m_1(\vartheta) = \int_{-\infty}^{\infty} x f_{\vartheta}(x) dx$$

berechnen.

Den Momentenschätzer erhalten wir, indem wir $m_1(\vartheta) = \frac{1}{2}\vartheta$ nach ϑ umstellen und $m_1(\vartheta)$ durch $\frac{1}{n}\sum_{j=1}^n x_j$ ersetzen, da wir den Momentenschätzer erhalten, wenn wir die theoretischen Momente durch die passenden Empirischen ersetzen.

d) Der Momentenschätzer ist laut Vorlesung erwartungstreu.

e) $L_x(\vartheta)$ erhält man direkt über die Definition der Likelihood-Funktion. Die Loglikelihood-Funktion erhalten wir, indem wir die Likelihood-Funktion logarithmieren und beachten, dass genau einer der beiden Indikatoren in jedem Faktor 1 bzw. 0 ist. Durch die Logarithmusgesetze erhalten wir somit:

$$\ell_x(\vartheta) = \log\left(\left(\frac{2}{3\vartheta}\right)^n \prod_{j=1}^n \left(e^{-x_j/\vartheta} \mathbb{1}_{\{x_j \ge 0\}} + e^{2x_j/\vartheta} \mathbb{1}_{\{x_j < 0\}}\right)\right)$$
$$= n\log(2) - n\log(3) - n\log(\vartheta) + \sum_{j=1}^n \left(\frac{2x_j}{\vartheta} \mathbb{1}_{\{x_j < 0\}} - \frac{x_j}{\vartheta} \mathbb{1}_{\{x_j \ge 0\}}\right).$$

Direktes ableiten der Loglikelihood-Funktion führt uns zur Ableitung. Den Maximum-Likelihood-Schätzer erhalten wir, indem wir die Ableitung der Loglikelihoodfunktion gleich 0 setzen und nach dem Parameter auflösen. Genauer:

$$\ell'_{x}(\vartheta) = 0$$

$$\iff \sum_{j=1}^{n} \left(\frac{x_{j}}{\vartheta^{2}} \mathbb{1}_{\{x_{j} \geq 0\}} - 2 \frac{x_{j}}{\vartheta^{2}} \mathbb{1}_{\{x_{j} < 0\}} \right) - \frac{n}{\vartheta} = 0$$

$$\iff \vartheta = \frac{1}{n} \sum_{j=1}^{n} \left(x_{j} \mathbb{1}_{\{x_{j} \geq 0\}} - 2 x_{j} \mathbb{1}_{\{x_{j} < 0\}} \right).$$

Setzen wir diesen Wert in die 2. Ableitung

$$\ell_x''(\vartheta) = \sum_{j=1}^n \left(-\frac{2x_j}{\vartheta^3} \frac{1}{n} \mathbb{1}_{\{x_j \ge 0\}} + \frac{4x_j}{\vartheta^3} \mathbb{1}_{\{x_j < 0\}} \right) + \frac{n}{\vartheta^2},$$

so sehen wir, dass diese an der Stelle $\vartheta = \frac{1}{n} \sum_{j=1}^{n} \left(x_{j} \mathbb{1}_{\{x_{j} \geq 0\}} - 2x_{j} \mathbb{1}_{\{x_{j} < 0\}} \right)$ kleiner als 0 ist, und damit die kritische Stelle auch tatsächlich ein Maximum ist, also wir den Maximum-Likelihood-Schätzer gefunden haben.