

## Analysis für das Lehramt Übungsblatt 04

Aufgabe 1 (Eigenschaften holomorpher Funktionen).

(a) Entscheiden Sie in jedem der folgenden Fälle, ob es eine Funktion f gibt, die holomorph in  $\mathbb C$  ist und die geforderte Eigenschaft erfüllt. Falls ja, wie sehen diese Funktionen dann aus?

(i) 
$$f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^2}$$
  $(n \in \mathbb{N}),$ 

(ii) 
$$f(\frac{1}{n}) = \frac{(-1)^n}{n}$$
  $(n \in \mathbb{N}),$ 

(iii) 
$$f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^3}$$
  $(n \in \mathbb{N}),$ 

(iv) 
$$f(\frac{1}{3n}) = \frac{1}{n}$$
  $(n \in \mathbb{N}).$ 

(b) Es sei  $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\},\,f\in H(\mathbb{D})\text{ und es gebe ein }C>0\text{ mit }\left|\frac{f(z)}{z}\right|\leq\frac{C}{\sqrt{|z|}}$   $(z\in\mathbb{D}\setminus\{0\}).$  Zeigen Sie, dass die Funktion  $g:\mathbb{D}\setminus\{0\}\to\mathbb{C},\,g(z):=\frac{f(z)}{z}$  in 0 eine hebbare Singularität besitzt.

**Aufgabe 2** (Klassifikation isolierter Singularitäten). Bestimmen Sie von den folgenden Funktionen f jeweils die Art und Lage sämtlicher isolierter Singularitäten. Der Definitionsbereich sei dabei jeweils die Menge der  $z \in \mathbb{C}$ , für die der Ausdruck erklärt ist.

(a) 
$$f(z) := \frac{z}{z^2 - z - 12}$$
,

(b) 
$$f(z) := \frac{1}{\sin(\frac{1}{z})}$$
,

(c) 
$$f(z) := \frac{\sin(z) - z}{z^3}$$
,

(d) 
$$f(z) := \frac{e^{\frac{1}{z}}}{(z-1)^2}$$
.

Aufgabe 3 (Cauchysche Integralformel und Ungleichungen).

(a) Für r > 0 sei  $\gamma_r(t) := r e^{it}$  ( $t \in [0, 2\pi]$ ). Berechnen Sie den Wert der folgenden Wegintegrale:

(i) 
$$\int_{\gamma_2} \frac{e^{2z}}{(z+1)^4} dz$$
,

(ii) 
$$\int_{\gamma_4} \frac{z e^{iz}}{(z-\pi)^3} dz.$$

(b) Es seien  $\alpha, \beta \ge 0$  und  $f \in H(\mathbb{C})$ , sodass gilt:

$$|f(z)| \le \alpha |z|^{\frac{3}{2}} + \beta \quad (z \in \mathbb{C}).$$

Zeigen Sie: Es existieren  $a, b \in \mathbb{C}$  mit f(z) = az + b ( $z \in \mathbb{C}$ ).

Aufgabe 4 (Mittelwertseigenschaft, Maximumsprinzip).

(a) Es sei  $\Omega \subseteq \mathbb{C}$  offen und  $f:\Omega \to \mathbb{C}$  holomorph. Zeigen Sie mittels der Cauchyschen Integralformel folgende Aussage: Sind  $z_0 \in \Omega$  und r>0 so klein, dass  $z_0+r\mathrm{e}^{\mathrm{i}t}\in\Omega$  für alle  $t\in[0,2\pi]$ , so gilt

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$

(b) Sei f wie in Punkt (a). Folgern Sie aus Punkt (a), dass |f| kein striktes Maximum besitzt, das heißt, dass kein  $z_0 \in \Omega$  existiert mit  $|f(z_0)| > |f(z)|$  für alle  $z \in \Omega \setminus \{z_0\}$ .

Hinweis: Führen Sie einen Widerspruchsbeweis.