Sheet 11

Aufgabe 1 (10 Punkte)

Seien \mathbb{K} ein Körper und V, W endlich-dimensionale Vektorräume über \mathbb{K} . Weiter sei $\Phi \colon V \to W$ eine lineare Abbildung. Zeigen Sie die folgenden Aussagen:

a) Φ ist genau dann injektiv, wenn für jede linear unabhängige Teilmenge M von V das Bild $\Phi(M)$ linear unabhängig in W ist.

I linear unabhängige Mense
$$M = \{m_1, ..., m_K\} \subseteq V$$

Seien $\lambda_1, ..., \lambda_K \in K$ mit

 $\sum_{i=1}^K \lambda_i \mathbb{Q}(m_i) = 0$
 $\Rightarrow \mathbb{Q}(\sum_{i=1}^K \lambda_i m_i) = 0$

Da \mathbb{Q} injektiv ist, Silt $Kom(\mathbb{Q}) = \{0\}$
 $\Rightarrow \lambda_1 = ... = \lambda_K = 0$
 $\Rightarrow \lambda_1 = ... = \lambda_K = 0$
 $\Rightarrow \mathbb{Q}(M)$ linear unabhängis

Wir zeigen es durch Widerspruch

Annahme, dass \emptyset nicht injektiv ist \Rightarrow Kern $(\emptyset) \neq \{0\} \Rightarrow \dim(\text{Kern}(\emptyset)) \geq 1$ Sei $M \subseteq V$ eine Basis von Kern (\emptyset) Dann haben wir, dass $\emptyset(M)$ linear unabhängis ist $\Rightarrow \emptyset(M) \neq \{0\}$

b) Φ ist genau dann surjektiv, wenn für jedes Erzeugendensystem M von V das Bild $\Phi(M)$ ein Erzeugendensystem von W ist.

c) Φ ist genau dann ein Isomorphismus, wenn für jede Basis M von V das Bild $\Phi(M)$ eine Basis von W ist.

linear unabhängig ist
Weil & ein Isomorphismus zwischen endlich-dimens
Vektorraume 1st, 311t
$\dim(W) = \dim(V) = M = \Phi(M) $
\Rightarrow $\mathfrak{P}(M)$ 1st eine Basis von W
Es reicht zu zeisen, dass & bijektiv ist
Y Basis M⊆V: QcM) eine Basis von W
⇒ V lin mab. M≤V: QcM) lin. mab.
→ Aus (a) ist & injektiv
Y Erzeusendensystem M C V
Sei M'SM eine Basis
- De M's aina Procis Non IN

→ D(M) Erzensendensystem

→ Aus (b) ist D swijektiv

Aufgabe 2 (10 Punkte)

Gegeben seien endlichdimensionale \mathbb{K} -Vektorräume V_1, V_2, V_3 sowie lineare Abbildungen $Φ: V_1 \rightarrow V_2$ und $Ψ: V_2 \rightarrow V_3$. Zeigen Sie

a) $Rg(\Psi \circ \Phi) \leq min\{Rg(\Phi), Rg(\Psi)\}.$ Bitte verwenden Sie **nicht** das Ergebnis aus (b).

Denken Sie daron, dass Ro(中の夏) = dim(Bild(中の夏)) Da Bild(ψ.) ⊆ Bild(Ψ), habon wir $R_{S}(\psi \circ \overline{\psi}) \leq dim(Bild(\psi)) = R_{S}(\psi)$ Weil Bild (40) = 4(Bild(2)), wilt Rg(40)=dim(Bild(40)) ≤ dim(Bild(2)) $= R_3(2)$ $\Rightarrow R_{9}(\psi \circ \cancel{1}) \leq \min\{R_{9}(\psi), R_{9}(\cancel{1})\}$

Dies kann man auch mit Abbildungsmatrizen beweisen

b) $\operatorname{Rg}(\Psi \circ \Phi) = \operatorname{Rg}(\Phi) - \operatorname{dim}(\operatorname{Bild}\Phi \cap \operatorname{Kern}\Psi).$ Definiere eine lineare Abbildung

Dann haben wir

$$R_{3}(\psi \circ \phi) = \dim(Bild(\psi \circ \phi))$$

$$= \dim(\psi(\mathfrak{F}(V)))$$

=
$$\dim(2(V_1)) - \dim(Kern(f))$$

Beachten Sie, dass

$$\dim(\mathfrak{P}(V_1)) = \dim(Bild(\mathfrak{P})) = R_2(\mathfrak{P})$$

Außerdem Silt

$$\operatorname{Kern}(f) = \{ x \in \mathcal{D}(V_1) \mid \psi(x) = 0 \}$$

$$=$$
 Bild(Φ) \cap Kern(Ψ)

$$\implies$$
 dim (Kern (f)) = dim (Bild(\mathbb{P}) \cap Kern(\mathbb{P})

Deshalb haben wir

$$Rs(\psi \circ \overline{\psi}) \leq Rs(\overline{\psi}) - dim(Bild(\overline{\psi}) \cap kern(\psi))$$

Aufgabe 3

Sei V ein (nicht notwendigerweise endlich dimensionaler) \mathbb{K} -Vektorraum und $\Phi:V\to V$ eine lineare Abbildung.

Wir betrachten die folgenden vier Aussagen:

i)
$$Kern(\Phi) \cap Bild(\Phi) = \{0\}.$$

ii)
$$V = Kern(\Phi) + Bild(\Phi)$$
.

iii)
$$\operatorname{Kern}(\Phi) = \operatorname{Kern}(\Phi^2)$$
.

iv)
$$Bild(\Phi) = Bild(\Phi^2)$$
.

a) Zeigen Sie, dass die Aussagen i) und iii) äquivalent sind.

(i)
$$\Rightarrow$$
 (iii):
 $\operatorname{Kern}(\mathfrak{P}^2) = \{x \in V \mid \mathfrak{P}(\mathfrak{P}(x)) = 0\}$
 $= \{x \in V \mid \mathfrak{P}(x) \in \operatorname{Kern}(\mathfrak{P})\}$
 $= \{x \in V \mid \mathfrak{P}(x) \in \operatorname{Kern}(\mathfrak{P}) \cap \operatorname{Bild}(\mathfrak{P})\}$
 $= \{x \in V \mid \mathfrak{P}(x) = 0\}$
 $= \operatorname{Kern}(\mathfrak{P})$

Annahme, dass
$$\exists x \in Kern(2) \cap Bild(2)$$
 mit $x \neq 0$

$$\Rightarrow \hat{\mathcal{I}}(\hat{\mathcal{I}}(y)) = 0$$

$$\Rightarrow$$
 y \in Kern (2^2) = Kern (2)

$$\Rightarrow x = \frac{1}{2}(y) = 0$$

b) Zeigen Sie, dass die Aussagen ii) und iv) äquivalent sind.

(ii)
$$\Rightarrow$$
 civ):

 $Bild(\mathfrak{P}^2) = \{\mathfrak{P}(x) \mid x \in Bild(\mathfrak{P})\}$

$$= \{\mathfrak{P}(x) \mid x \in V - Kom(\mathfrak{P})\}$$

$$= \{\mathfrak{P}(a-b) \mid a \in V, b \in Kom(\mathfrak{P})\}$$

$$= \{\mathfrak{P}(a) \mid a \in V\}$$

$$= Bild(\mathfrak{P})$$
(iv) \Rightarrow (ii):

Es reicht zu zeigen, dass
$$V \subseteq Kem(\mathfrak{P}) + Bild(\mathfrak{P})$$

$$V \times \in V : \mathfrak{P}(x) \in Bild(\mathfrak{P}) = Bild(\mathfrak{P}^2)$$

$$\Rightarrow \exists y \in Bild(\mathfrak{P}) \cdot \mathfrak{P}(y) = \mathfrak{P}(x)$$

$$\Rightarrow \exists y \in Bild(\mathfrak{P}) \cdot \mathfrak{P}(y) = \mathfrak{P}(x)$$

$$\Rightarrow (x-y) = 0$$

$$\Rightarrow x-y \in Kom(\mathfrak{P})$$

$$\Rightarrow x = (x-y) + y \in Kom(\mathfrak{P}) + Bild(\mathfrak{P})$$

c) Zeigen Sie, dass alle vier Aussagen äquivalent sind, wenn V endlich dimensional ist.

Es reicht zu zeigen. (i)
$$\iff$$
 cii)

(i) \implies cii):

 $korn(2) + Bild(2) \leq V$ $+ trivial$
 $dim(kern(2) + Bild(2))$
 $= dim(kern(2)) + dim(Bild(2)) - dim(kern(2) \cap Bild(2))$
 $= dim(V)$ $= 0$
 $\implies kern(2) + Bild(2) = V$

(ii) \implies (i):

 $dim(kern(2)) + dim(Bild(2)) - dim(kern(2) \cap Bild(2))$
 $= dim(V)$
 $= dim(V)$
 $= dim(V)$
 $\implies dim(kern(2) \cap Bild(2)) = 0$
 $\implies kern(2) \cap Bild(2) = 0$
 $\implies kern(2) \cap Bild(2) = 0$

Geben Sie ein Gesenbeispiel wenn $dim(V) = \infty$

d) Finden Sie im Fall $V = \mathbb{K}^2$ jeweils ein explizites Beispiel für Φ , sodass alle vier Aussagen wahr bzw. alle vier Aussagen falsch sind.

Alle wahr:
$$2 = idv$$

Alle falsch.
$$2(\binom{1}{0}) = \binom{2}{0}, \quad 2(\binom{2}{1}) = \binom{1}{0}$$