Lösung zu Aufgabe 4 (12. Übungsblatt)

Wir wählen den Punkt O aus der Aufgabenstellung als Ursprung. Sei Φ die zugehörige lineare Abbildung.

Falls eine Hyperebene H wie gefordert existiert, muss $O \in H$ gelten, da anderenfalls φ die Identität wäre. Es genügt deshalb, die Existenz eines (n-1)-dim. Unterraums U von V zu zeigen mit $\Phi|_U = \operatorname{id}(\operatorname{d.h.}, U$ ist Fixpunktmenge von Φ). Dann ist H := O + U Hyperebene und Fixpunktmenge von φ , denn es gilt für beliebige $X \in H$:

$$\overrightarrow{O\varphi(X)} = \Phi(\overrightarrow{OX}) = \overrightarrow{OX} \text{ also } \varphi(X) = X.$$

Wir beweisen die folgende Aussage, die die Existenz eines solchen U impliziert:

(*) Ist W ein UVR mit dim $W = k \le n-2$ und $\Phi|_W = \operatorname{id}$, so gibt es ein $b \in V \setminus W$ mit $\Phi(b) = b$. Beweis: Nach Voraussetzung gibt es zwei Vektoren $x, y \in V \setminus W$, die lin. unabh. sind und für die deshalb $[x,y] \cap W = \{0\}$ gilt. Ist $\Phi(x) = x$ oder $\Phi(y) = y$, so setze b := x bzw. b := y und die Beh. ist gezeigt. Anderenfalls gilt nach Voraussetzung (ii) für die Punkte $X, Y \in \mathbb{A}$ mit $x = \overrightarrow{OX}$, $y = \overrightarrow{OY}$: $X\varphi(X)||Y\varphi(Y)$, also $\Phi(x) - x = c(\Phi(y) - y)$ für ein $c \ne 0$. Letztere Gleichung läßt sich umformen zu $\Phi(x - cy) = x - cy$. Damit ist aber $b := x - cy \in [x, y]$ ein Fixpunkt von Φ . Die lin. Unabh. von x, y impliziert $b \ne 0$ und somit $b \notin W$. Also ist die Beh. auch in diesem Fall gezeigt.

Bemerkung: Für die Beziehung $O \in H$ haben wir benutzt, dass eine Gerade mit zwei Fixpunkten bereits eine Fixpunktgerade ist. Aus dieser Aussage läßt sich auch folgern, dass die Ebene H sogar eindeutig bestimmt ist.