

Institut für Algebra und Geometrie Dr. Rafael Dahmen M.Sc. Maximilian Wackenhuth

Lineare Algebra 2

Sommersemester 2024

Musterlösung zu Übungsblatt 9

21.06.2024

Aufgabe 1 (8 Punkte)

Es sei \mathbb{K} ein Körper und V ein \mathbb{K} -Vektorraum. Für $v \in V$ sei $\varphi_v : \mathbb{K} \to V, \lambda \mapsto \lambda v$.

a) Zeigen Sie: Für $v \in V$ ist φ_v^* durch

$$V^* \to \mathbb{K}^*, \ \sigma \mapsto \sigma(v) \mathrm{id}_{\mathbb{K}}$$

gegeben.

b) Zeigen Sie, dass die Abbildung

$$\Psi: \operatorname{Hom}(\mathbb{K}, V) \to V, \ \varphi \mapsto \varphi(1)$$

ein Isomorphismus ist und geben Sie die Inverse an.

Lösung zu Aufgabe 1

a) Es seien $\sigma \in V^*$ und $\lambda \in \mathbb{K}$. Dann gilt

$$\varphi_v^*(\sigma)(\lambda) = \sigma(\varphi_v(\lambda)) = \sigma(\lambda v) = \lambda \sigma(v) = \sigma(v) \mathrm{id}_{\mathbb{K}}(\lambda).$$

Somit folgt $\varphi_v^*(\sigma) = \sigma(v) \mathrm{id}_{\mathbb{K}}$

b) Wir betrachten $\Phi: V \to \operatorname{Hom}(K, V), v \mapsto \varphi_v$. Diese Abbildung ist linear, denn für $v, w \in V$ und $\lambda \in \mathbb{K}$ gilt $\Phi(\lambda v + w)(t) = \varphi_{\lambda v + w}(t) = t(\lambda v + w) = \lambda tv + tw = \lambda \varphi_v(t) + \varphi_w(t) = \lambda \Phi(v)(t) + \Phi(w)(t)$ für alle $t \in \mathbb{K}$ und damit $\Phi(\lambda v + w) = \lambda \Phi(v) + \Phi(w)$. Somit ist Φ linear. Es gilt

$$\Psi(\Phi(v)) = \varphi_v(1) = v$$

und ist $\varphi \in \text{Hom}(\mathbb{K}, V)$, so gilt $\varphi(\lambda) = \lambda \varphi(1) = \varphi_{\varphi(1)}(\lambda)$ für alle $\lambda \in \mathbb{K}$, d.h. $\varphi = \varphi_{\varphi(1)}$ und damit ist

$$\Phi(\Psi(\varphi)) = \varphi_{\varphi(1)} = \varphi.$$

Also ist Φ die Inverse von Ψ und Ψ ein Isomorphismus.

Aufgabe 2 (8 Punkte)

Es sei \mathbb{K} ein Körper, $n \in \mathbb{N}$ mit n > 1 und $\mathsf{E} := \{e_1, \dots, e_n\}$ die Standardbasis von \mathbb{K}^n . Weiter sei

$$b_i := \sum_{j=1}^i e_j$$

für $i \leq n$. Weiter seien e_i^* , $i \in 1, \ldots, n$ die Koordinatenfunktionen bezüglich der Basis E und b_i^* die Koordinatenfunktionen bezüglich der Basis B := (b_1, \ldots, b_n) .

- a) Zeigen Sie, dass $e_1^* \neq b_1^*$.
- b) Stellen Sie für jedes $i\in\{1,\ldots,n\}$ die Abbildung e_i^* als Linearkombination der Elemente der dualen Basis $\mathsf{B}^*=(b_1^*,\ldots,b_n^*)$ dar.

Lösung zu Aufgabe 2

a) Es gilt

$$e_1^*(b_2) = e_1^*(e_1 + e_2) = 1$$

und

$$b_1^*(b_2) = 0.$$

b) Es gilt

$$e_i^*(b_j) = e_i^*(\sum_{k=1}^j e_k) = \begin{cases} 1, & i \le j \\ 0, & i > j \end{cases}.$$

Ist $\varphi \in (\mathbb{K}^n)^*$, so gilt

$$\varphi(x) = \varphi(\sum_{k=1}^{n} b_k^*(x)b_k) = \sum_{k=1}^{n} \varphi(b_k)b_k^*(x)$$

und damit

$$\varphi = \sum_{k=1}^{n} \varphi(b_k) b_k^*.$$

Also ist

$$e_i^* = \sum_{k=i}^n b_k^*.$$